题目内容
过点B(0,1)的直线l1交曲线x=2于P(2,y0),过点B'(0,-1)的直线l2交x轴于P'(x0,0)点,
,l1∩l2=M.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)设直线l与C相交于不同的两点S、T,已知点S的坐标为(-2,0),点Q(0,m)在线段ST的垂直平分线上且
≤4,求m的取值范围.
解:(Ⅰ)由题意,直线l1的方程是
,
∵
,∴l1的方程是![](http://thumb.zyjl.cn/pic5/latex/531527.png)
若直线l2与y轴重合,则M(0,1);
若直线l2不与y重合,可求得直线l2的方程是
,与l1的方程联立消去x0得
,
因l1不经过(0,-1),故动点M的轨迹C的方程是
(y≠-1)…(5分)
(Ⅱ)设T(x1,y1),直线l的方程为y=k(x+2)![](http://thumb.zyjl.cn/pic5/latex/531529.png)
于是S、T两点的坐标满足方程组
,由方程消去y并整理得(1+4k2)x2+16k2x+16k2-4=0
由-2x1=
得x1=
,从而y1=![](http://thumb.zyjl.cn/pic5/latex/155892.png)
设线段ST的中点为N,则N(
,
)…(7分)
以下分两种情况:①当k=0时,点T的坐标为(2,0),线段ST的垂直平分线为y轴,
于是
,由
≤4得:-2
≤m≤2
.
②当k≠0时,线段ST的垂直平分线方程为y-
=-
(x+
)
令x=0,得m=![](http://thumb.zyjl.cn/pic5/latex/531532.png)
∵
,∴
,
由
=-2x1-m(y1-m)=
+
(
+
)=
≤4
解得-
≤k≤
且k≠0,∴m=
=![](http://thumb.zyjl.cn/pic5/latex/531535.png)
∴当-
≤k<0时,
≤-4;当0<k≤
时,
≥4
∴-
≤m≤
,且m≠0
综上所述,-
≤m<
,且m≠0.…(12分)
分析:(Ⅰ)确定直线l1、l2的方程,联立方程可得动点M的轨迹C的方程;
(Ⅱ)设直线l的方程,代入椭圆方程,利用韦达定理,确定线段ST的中点坐标,分类讨论,利用
≤4,即可得到结论.
点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
![](http://thumb.zyjl.cn/pic5/latex/531526.png)
∵
![](http://thumb.zyjl.cn/pic5/latex/185123.png)
![](http://thumb.zyjl.cn/pic5/latex/531527.png)
若直线l2与y轴重合,则M(0,1);
若直线l2不与y重合,可求得直线l2的方程是
![](http://thumb.zyjl.cn/pic5/latex/531528.png)
![](http://thumb.zyjl.cn/pic5/latex/1164.png)
因l1不经过(0,-1),故动点M的轨迹C的方程是
![](http://thumb.zyjl.cn/pic5/latex/1164.png)
(Ⅱ)设T(x1,y1),直线l的方程为y=k(x+2)
![](http://thumb.zyjl.cn/pic5/latex/531529.png)
于是S、T两点的坐标满足方程组
![](http://thumb.zyjl.cn/pic5/latex/30816.png)
由-2x1=
![](http://thumb.zyjl.cn/pic5/latex/225626.png)
![](http://thumb.zyjl.cn/pic5/latex/225627.png)
![](http://thumb.zyjl.cn/pic5/latex/155892.png)
设线段ST的中点为N,则N(
![](http://thumb.zyjl.cn/pic5/latex/531530.png)
![](http://thumb.zyjl.cn/pic5/latex/225628.png)
以下分两种情况:①当k=0时,点T的坐标为(2,0),线段ST的垂直平分线为y轴,
于是
![](http://thumb.zyjl.cn/pic5/latex/531531.png)
![](http://thumb.zyjl.cn/pic5/latex/185124.png)
![](http://thumb.zyjl.cn/pic5/latex/53.png)
![](http://thumb.zyjl.cn/pic5/latex/53.png)
②当k≠0时,线段ST的垂直平分线方程为y-
![](http://thumb.zyjl.cn/pic5/latex/225628.png)
![](http://thumb.zyjl.cn/pic5/latex/5688.png)
![](http://thumb.zyjl.cn/pic5/latex/23931.png)
令x=0,得m=
![](http://thumb.zyjl.cn/pic5/latex/531532.png)
∵
![](http://thumb.zyjl.cn/pic5/latex/531533.png)
![](http://thumb.zyjl.cn/pic5/latex/531534.png)
由
![](http://thumb.zyjl.cn/pic5/latex/185124.png)
![](http://thumb.zyjl.cn/pic5/latex/225632.png)
![](http://thumb.zyjl.cn/pic5/latex/225631.png)
![](http://thumb.zyjl.cn/pic5/latex/155892.png)
![](http://thumb.zyjl.cn/pic5/latex/225631.png)
![](http://thumb.zyjl.cn/pic5/latex/225633.png)
解得-
![](http://thumb.zyjl.cn/pic5/latex/207416.png)
![](http://thumb.zyjl.cn/pic5/latex/207416.png)
![](http://thumb.zyjl.cn/pic5/latex/531532.png)
![](http://thumb.zyjl.cn/pic5/latex/531535.png)
∴当-
![](http://thumb.zyjl.cn/pic5/latex/207416.png)
![](http://thumb.zyjl.cn/pic5/latex/531536.png)
![](http://thumb.zyjl.cn/pic5/latex/207416.png)
![](http://thumb.zyjl.cn/pic5/latex/531536.png)
∴-
![](http://thumb.zyjl.cn/pic5/latex/33.png)
![](http://thumb.zyjl.cn/pic5/latex/33.png)
综上所述,-
![](http://thumb.zyjl.cn/pic5/latex/33.png)
![](http://thumb.zyjl.cn/pic5/latex/33.png)
分析:(Ⅰ)确定直线l1、l2的方程,联立方程可得动点M的轨迹C的方程;
(Ⅱ)设直线l的方程,代入椭圆方程,利用韦达定理,确定线段ST的中点坐标,分类讨论,利用
![](http://thumb.zyjl.cn/pic5/latex/185124.png)
点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目