题目内容
椭圆C的方程x2 |
a2 |
y2 |
b2 |
(Ⅰ)若椭圆的离心率e=
| ||
2 |
OA |
OB |
12 |
5 |
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP |
OA |
OB |
分析:(Ⅰ)由e=
,知a=2b,c=
b.由
,知A(
,
),B(0,-b).再由
•
=-
能推导出椭圆C的方程.
(Ⅱ)由
,得(b2+a2)x2-2a2cx+a2(c2-b2)=0,由韦达定理知
+
=(
,
),
=(
,
).再由点P在椭圆C上,知λ2=
=
=
-
>
,由此能导出λ的取值范围.
| ||
2 |
3 |
|
8b |
5 |
3b |
5 |
OA |
OB |
12 |
5 |
(Ⅱ)由
|
OA |
OB |
2a2c |
a2+b2 |
-2b2c |
a2+b2 |
OP |
2λa2c |
a2+b2 |
-2λb2c |
a2+b2 |
a2+b2 |
4c2 |
2a2-c2 |
4c2 |
1 |
2e2 |
1 |
4 |
1 |
4 |
解答:解:(Ⅰ)∵e=
,∴a=2b,c=
b.
,
∴A(
,
),B(0,-b).
∵
•
=-
,∴-
=-
,b2=4,a2=16.
∴椭圆C的方程为
+
=1.(5分)
(Ⅱ)由
,
得(b2+a2)x2-2a2cx+a2(c2-b2)=0,
x1+x2 =
,y1+y2=
.
+
=(
,
),
=(
,
).
∵点P在椭圆C上,将点P坐标代入椭圆方程中得λ2=
.
∵b2+c2=a2,0<e<1,
∴λ2=
=
=
-
>
,
∴λ>
.(12分)
| ||
2 |
3 |
|
∴A(
8b |
5 |
3b |
5 |
∵
OA |
OB |
12 |
5 |
3b2 |
5 |
12 |
5 |
∴椭圆C的方程为
x2 |
16 |
y2 |
4 |
(Ⅱ)由
|
得(b2+a2)x2-2a2cx+a2(c2-b2)=0,
x1+x2 =
2a2c |
a2+b2 |
-2b2c |
a2+b2 |
OA |
OB |
2a2c |
a2+b2 |
-2b2c |
a2+b2 |
OP |
2λa2c |
a2+b2 |
-2λb2c |
a2+b2 |
∵点P在椭圆C上,将点P坐标代入椭圆方程中得λ2=
a2+b2 |
4c2 |
∵b2+c2=a2,0<e<1,
∴λ2=
a2+b2 |
4c2 |
2a2-c2 |
4c2 |
1 |
2e2 |
1 |
4 |
1 |
4 |
∴λ>
1 |
2 |
点评:本题考查椭圆方程的求法和求实数λ的取值范围.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目