ÌâÄ¿ÄÚÈÝ
£¨2013•ºþ±±£©ÉènÊÇÕýÕûÊý£¬rΪÕýÓÐÀíÊý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º
£¼nr£¼
£»
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]=2£¬[¦Ð]=4£¬[-
]=-1£®ÁîS=
+
+
+¡+
£¬Çó[S]µÄÖµ£®
£¨²Î¿¼Êý¾Ý£º80
¡Ö344.7£¬81
¡Ö350.5£¬124
¡Ö618.3£¬126
¡Ö631.7)£®
£¨¢ñ£©Çóº¯Êýf£¨x£©=£¨1+x£©r+1-£¨r+1£©x-1£¨x£¾-1£©µÄ×îСֵ£»
£¨¢ò£©Ö¤Ã÷£º
nr+1-(n-1)r+1 |
r+1 |
(n+1)r+1-nr+1 |
r+1 |
£¨¢ó£©Éèx¡ÊR£¬¼Ç[x]Ϊ²»Ð¡ÓÚxµÄ×îСÕûÊý£¬ÀýÈç[2]=2£¬[¦Ð]=4£¬[-
3 |
2 |
3 | 81 |
3 | 82 |
3 | 83 |
3 | 125 |
£¨²Î¿¼Êý¾Ý£º80
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
·ÖÎö£º£¨¢ñ£©ÏÈÇó³öº¯Êýf£¨x£©µÄµ¼º¯Êýf¡ä£¨x£©£¬Áîf'£¨x£©=0£¬½âµÃx=0£¬ÔÙÇó³öº¯ÊýµÄµ¥µ÷Çø¼ä£¬½ø¶øÇó³ö×îСֵΪf£¨0£©=0£»
£¨¢ò£©¸ù¾Ý£¨¢ñ£©Öª£¬¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬Áîx=
´úÈë²¢»¯¼òµÃnr£¼
£¬ÔÙÁîx=-
µÃ£¬nr£¾
£¬¼´½áÂ۵õ½Ö¤Ã÷£»
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬Áîr=
£¬n·Ö±ðÈ¡Öµ81£¬82£¬83£¬¡£¬125£¬·Ö±ðÁгö²»µÈʽ£¬ÔÙ½«¸÷ʽÏà¼ÓµÃ£¬
(125
-80
)£¼S£¼
(126
-81
)£¬ÔÙÓɲο¼Êý¾ÝºÍÌõ¼þ½øÐÐÇó½â£®
£¨¢ò£©¸ù¾Ý£¨¢ñ£©Öª£¬¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬Áîx=
1 |
n |
(n+1)r+1-nr+1 |
r+1 |
1 |
n |
nr+1-(n-1)r+1 |
r+1 |
£¨¢ó£©¸ù¾Ý£¨¢ò£©µÄ½áÂÛ£¬Áîr=
1 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
½â´ð£º½â£»£¨¢ñ£©ÓÉÌâÒâµÃf'£¨x£©=£¨r+1£©£¨1+x£©r-£¨r+1£©=£¨r+1£©[£¨1+x£©r-1]£¬
Áîf'£¨x£©=0£¬½âµÃx=0£®
µ±-1£¼x£¼0ʱ£¬f'£¨x£©£¼0£¬¡àf£¨x£©ÔÚ£¨-1£¬0£©ÄÚÊǼõº¯Êý£»
µ±x£¾0ʱ£¬f'£¨x£©£¾0£¬¡àf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÊÇÔöº¯Êý£®
¹Êº¯Êýf£¨x£©ÔÚx=0´¦£¬È¡µÃ×îСֵΪf£¨0£©=0£®
£¨¢ò£©ÓÉ£¨¢ñ£©£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬ÓÐf£¨x£©¡Ýf£¨0£©=0£¬
¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬ÇҵȺŵ±ÇÒ½öµ±x=0ʱ³ÉÁ¢£¬
¹Êµ±x£¾-1ÇÒx¡Ù0£¬ÓУ¨1+x£©r+1£¾1+£¨r+1£©x£¬¢Ù
ÔÚ¢ÙÖУ¬Áîx=
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬µÃ(1+
)r+1£¾1+
£®
ÉÏʽÁ½±ßͬ³Ënr+1£¬µÃ£¨n+1£©r+1£¾nr+1+nr£¨r+1£©£¬
¼´nr£¼
£¬¢Ú
µ±n£¾1ʱ£¬ÔÚ¢ÙÖÐÁîx=-
£¨Õâʱx£¾-1ÇÒx¡Ù0£©£¬
ÀàËƿɵÃnr£¾
£¬¢Û
ÇÒµ±n=1ʱ£¬¢ÛÒ²³ÉÁ¢£®
×ۺϢڣ¬¢ÛµÃ
£¼nr£¼
£¬¢Ü
£¨¢ó£©ÔÚ¢ÜÖУ¬Áîr=
£¬n·Ö±ðÈ¡Öµ81£¬82£¬83£¬¡£¬125£¬
µÃ
(81
-80
)£¼
£¼
(82
-81
)£¬
(82
-81
)£¼
£¼
(83
-82
)£¬
(83
-82
)£¼
£¼
(84
-83
)£¬¡
(125
-124
)£¼
£¼
(126
-125
)£¬
½«ÒÔÉϸ÷ʽÏà¼Ó£¬²¢ÕûÀíµÃ
(125
-80
)£¼S£¼
(126
-81
)£®
´úÈëÊý¾Ý¼ÆË㣬¿ÉµÃ
(125
-80
)¡Ö210.2£¬
(126
-81
)¡Ö210.9
ÓÉ[S]µÄ¶¨Ò壬µÃ[S]=211£®
Áîf'£¨x£©=0£¬½âµÃx=0£®
µ±-1£¼x£¼0ʱ£¬f'£¨x£©£¼0£¬¡àf£¨x£©ÔÚ£¨-1£¬0£©ÄÚÊǼõº¯Êý£»
µ±x£¾0ʱ£¬f'£¨x£©£¾0£¬¡àf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÊÇÔöº¯Êý£®
¹Êº¯Êýf£¨x£©ÔÚx=0´¦£¬È¡µÃ×îСֵΪf£¨0£©=0£®
£¨¢ò£©ÓÉ£¨¢ñ£©£¬µ±x¡Ê£¨-1£¬+¡Þ£©Ê±£¬ÓÐf£¨x£©¡Ýf£¨0£©=0£¬
¼´£¨1+x£©r+1¡Ý1+£¨r+1£©x£¬ÇҵȺŵ±ÇÒ½öµ±x=0ʱ³ÉÁ¢£¬
¹Êµ±x£¾-1ÇÒx¡Ù0£¬ÓУ¨1+x£©r+1£¾1+£¨r+1£©x£¬¢Ù
ÔÚ¢ÙÖУ¬Áîx=
1 |
n |
1 |
n |
r+1 |
n |
ÉÏʽÁ½±ßͬ³Ënr+1£¬µÃ£¨n+1£©r+1£¾nr+1+nr£¨r+1£©£¬
¼´nr£¼
(n+1)r+1-nr+1 |
r+1 |
µ±n£¾1ʱ£¬ÔÚ¢ÙÖÐÁîx=-
1 |
n |
ÀàËƿɵÃnr£¾
nr+1-(n-1)r+1 |
r+1 |
ÇÒµ±n=1ʱ£¬¢ÛÒ²³ÉÁ¢£®
×ۺϢڣ¬¢ÛµÃ
nr+1-(n-1)r+1 |
r+1 |
(n+1)r+1-nr+1 |
r+1 |
£¨¢ó£©ÔÚ¢ÜÖУ¬Áîr=
1 |
3 |
µÃ
3 |
4 |
4 |
3 |
4 |
3 |
3 | 81 |
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
3 | 82 |
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
3 | 83 |
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
3 | 125 |
3 |
4 |
4 |
3 |
4 |
3 |
½«ÒÔÉϸ÷ʽÏà¼Ó£¬²¢ÕûÀíµÃ
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
´úÈëÊý¾Ý¼ÆË㣬¿ÉµÃ
3 |
4 |
4 |
3 |
4 |
3 |
3 |
4 |
4 |
3 |
4 |
3 |
ÓÉ[S]µÄ¶¨Ò壬µÃ[S]=211£®
µãÆÀ£º±¾Ì⿼²éÁËÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔºÍÇó×îÖµ£¬ÒÔ¼°Ñ§ÉúµÄ´´Ð¾«Éñ£¬ÊÇ·ñ»á¹Û²ì£¬»á³éÏó¸ÅÀ¨£¬»áÓÃÀà±ÈµÄ·½·¨µÃ³öÆäËü½áÂÛ£¬ÄѶȽϴó£¬×¢ÒâÀûÓÃÉÏÒ»ÎʵĽáÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿