题目内容

设双曲线C:-y2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.

(1)求双曲线C的离心率e的取值范围;

(2)设直线l与y轴的交点为P,且=,求a的值.

1、离心率e的取值范围为(,)∪(,+∞).

2、a=.


解析:

(1)由C与l相交于两个不同的点,故知方程组有两个不同的实数解,消去y并整理得(1-a2)x2+2a2x-2a2=0.                                                   ①

所以

解得0<a<且a≠1.

双曲线的离心率e==,

∵0<a<且a≠1,

∴e>且e≠,即离心率e的取值范围为(,)∪(,+∞).

(2)设A(x1,y1),B(x2,y2),P(0,1),

=,

∴(x1,y1-1)=(x2,y2-1).

由此得x1=x2.

由于x1、x2都是方程①的根,且1-a2≠0,所以x2=-,x22=-.

消去x2得-=.

又a>0,所以a=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网