题目内容
如图在四棱锥P-ABCD中,侧棱PD⊥平面ABCD,M,N分别是AB,PC的中点,底面ABCD是菱形,
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.
(1)求证:MN∥平面PAD;
(2)求证:平面PAC⊥平面PBD.
分析:(1)取CD中点E,连接ME,NE,结合已知条件,由三角形中位线定理可得ME∥AD,NE∥PD,由面面平行的判定定理易判断出平面MNE∥平面PAD,再由面面平行的判定定理得到MN∥平面PAD;
(2)由已知中底面ABCD是菱形,PD⊥底面ABCD,结合正方形的性质及线面垂直的性质,可得AC⊥BD,PD⊥AC,由线面垂直的判定定理得AC⊥平面PBD,再由面面垂直的判定定理可得平面PAC⊥平面PBD;
(2)由已知中底面ABCD是菱形,PD⊥底面ABCD,结合正方形的性质及线面垂直的性质,可得AC⊥BD,PD⊥AC,由线面垂直的判定定理得AC⊥平面PBD,再由面面垂直的判定定理可得平面PAC⊥平面PBD;
解答:证明:(1)取CD中点E,连接ME,NE,
由已知M,N分别是AB,PC的中点,
∴ME∥AD,NE∥PD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PAD,
所以,MN∥平面PAD
(2)ABCD为菱形,
所以AC⊥BD,
又PD⊥平面ABCD,所以PD⊥AC,
所以AC⊥平面PBD,
所以平面PAC⊥平面PBD
由已知M,N分别是AB,PC的中点,
∴ME∥AD,NE∥PD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PAD,
所以,MN∥平面PAD
(2)ABCD为菱形,
所以AC⊥BD,
又PD⊥平面ABCD,所以PD⊥AC,
所以AC⊥平面PBD,
所以平面PAC⊥平面PBD
点评:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,熟练掌握空间线面关系的判定定理是解答的关键.
练习册系列答案
相关题目