题目内容
(理科)如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,|AB|=
,|CD|=2-
,AC⊥BD,M为CD的中点.
(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数λ0,使
=λ0
,且P点到A、B 的距离和为定值,
(3)过(0,
)的直线与轨迹E交于P、Q两点,且
•
=0,求此直线方程.求点P的轨迹E的方程.
4
| ||
3 |
4
| ||
3 |
(1)求点M的轨迹方程;
(2)过M作AB的垂线,垂足为N,若存在正常数λ0,使
MP |
PN |
(3)过(0,
1 |
2 |
OP |
OQ |
分析:(1)设点M的坐标为M(x,y)(x≠0),则 C(x,y-1+
),D(x,y+1-
),利用AC⊥BD,即
•
=0,可得轨迹方程;
(2)确定P的轨迹方程为椭圆(除去长轴的两个端点),要P到A、B的距离之和为定值,则以A、B为焦点,故1+
=
,从而可得所求P的轨迹方程;
(3)易知l的斜率存在,设方程为y=kx+
代入椭圆方程,利用
•
=0,即可求得结论.
2
| ||
3 |
2
| ||
3 |
AC |
BD |
(2)确定P的轨迹方程为椭圆(除去长轴的两个端点),要P到A、B的距离之和为定值,则以A、B为焦点,故1+
1 |
(1+λ0)2 |
8 |
9 |
(3)易知l的斜率存在,设方程为y=kx+
1 |
2 |
OP |
OQ |
解答:解:(1)设点M的坐标为M(x,y)(x≠0),则 C(x,y-1+
),D(x,y+1-
)
∵A(0,
),B(0,-
),AC⊥BD
∴
•
=0,即(x,y-1)•(x,y+1)=0,
∴x2+y2=1(x≠0).
(2)设P(x,y),则M((1+λ0)x,y),代入M的轨迹方程(1+λ0)2 x2+y2=1(x≠0)
∴P的轨迹方程为椭圆(除去长轴的两个端点).
要P到A、B的距离之和为定值,则以A、B为焦点,故1+
=
,
∴λ0=2
从而所求P的轨迹方程为9x2+y2=1(x≠0).
(3)l的斜率存在,设方程为y=kx+
,代入椭圆方程可得(9+k2)x2+kx-
=0
设P(x1,y1),Q(x2,y2),则x1+x2=-
,x1x2=-
∵
•
=0,∴x1x2+y1y2=0,
整理,得
-
+
=0
∴k=±
即所求l的方程为y=±
x+
2
| ||
3 |
2
| ||
3 |
∵A(0,
2
| ||
3 |
2
| ||
3 |
∴
AC |
BD |
∴x2+y2=1(x≠0).
(2)设P(x,y),则M((1+λ0)x,y),代入M的轨迹方程(1+λ0)2 x2+y2=1(x≠0)
∴P的轨迹方程为椭圆(除去长轴的两个端点).
要P到A、B的距离之和为定值,则以A、B为焦点,故1+
1 |
(1+λ0)2 |
8 |
9 |
∴λ0=2
从而所求P的轨迹方程为9x2+y2=1(x≠0).
(3)l的斜率存在,设方程为y=kx+
1 |
2 |
3 |
4 |
设P(x1,y1),Q(x2,y2),则x1+x2=-
k |
9+k2 |
3 |
4(9+k2) |
∵
OP |
OQ |
整理,得
-3(k2+1) |
4(9+k2) |
k2 |
2(9++k2) |
1 |
4 |
∴k=±
| ||
2 |
即所求l的方程为y=±
| ||
2 |
1 |
2 |
点评:本题考查轨迹方程的求法,考查直线与椭圆的位置关系,考查向量知识的运用,属于中档题.
练习册系列答案
相关题目