题目内容
已知数列{an}是首项a1=
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
|an|,若Tn=
+
+…+
,求证:
≤Tn<
.
1 |
4 |
(1)求数列{an}的通项公式;
(2)设bn=log
1 |
2 |
1 |
b1b2 |
1 |
b2b3 |
1 |
bnbn+1 |
1 |
6 |
1 |
2 |
分析:(1)若q=1,则S3=
,S4=1,S2=
,显然S3,S4,S2不构成等差数列,所以q≠1;当q≠1时,由S3,S4,S2成等差数列得2•
=
+
,可求公比,进而可求数列{an}的通项公式;
(2)根据bn=log
|an|=n+1,可得
=
=
-
,可求Tn,进而可得{Tn}是递增数列,故可得证.
3 |
4 |
1 |
2 |
a1(1-q4) |
1-q |
a1(1-q3) |
1-q |
a1(1-q2) |
1-q |
(2)根据bn=log
1 |
2 |
1 |
bnbn+1 |
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
解答:(1)解:若q=1,则S3=
,S4=1,S2=
,显然S3,S4,S2不构成等差数列.
∴q≠1,
当q≠1时,由S3,S4,S2成等差数列得2•
=
+
∴2q2-q-1=0
∵q≠1,∴q=-
∵a1=
∴an=(-
)n+1
(2)证明:∵bn=log
|an|=n+1,
∴
=
=
-
∴Tn=
+
+…+
=(
-
)+(
-
)+…+(
-
)=
-
∴Tn+1-Tn=
>0,
∴{Tn}是递增数列.
∴T1≤Tn
∴
≤Tn<
.
3 |
4 |
1 |
2 |
∴q≠1,
当q≠1时,由S3,S4,S2成等差数列得2•
a1(1-q4) |
1-q |
a1(1-q3) |
1-q |
a1(1-q2) |
1-q |
∴2q2-q-1=0
∵q≠1,∴q=-
1 |
2 |
∵a1=
1 |
4 |
∴an=(-
1 |
2 |
(2)证明:∵bn=log
1 |
2 |
∴
1 |
bnbn+1 |
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
∴Tn=
1 |
b1b2 |
1 |
b2b3 |
1 |
bnbn+1 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
∴Tn+1-Tn=
1 |
(n+2)(n+3) |
∴{Tn}是递增数列.
∴T1≤Tn
∴
1 |
6 |
1 |
2 |
点评:本题以等比数列为载体,考查数列的通项公式,考查裂项法求数列的和,考查不等式的证明,解题的关键是裂项法求数列的和.
练习册系列答案
相关题目