ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$µÄÓÒ½¹µãΪF£¬µãPÔÚÍÖÔ²ÉÏ£¬ÇÒPF¡ÍxÖᣬ|PF|=$\frac{1}{2}$£¬ÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôP1P2ÊÇÍÖÔ²Éϲ»Í¬µÄÁ½µã£¬P1P2¡ÍxÖᣬԲE¹ýF£¬P1£¬P2Èýµã£¬ÇÒÍÖÔ²ÉÏÈÎÒâÒ»µã¶¼²»ÔÚÔ²EÄÚ£¬ÇóÔ²EµÄ·½³Ì£®
·ÖÎö £¨¢ñ£©ÉèF£¨c£¬0£©£¬x=c´úÈëÍÖÔ²·½³Ì£¬½âµÃ|PF|£¬ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬½â·½³Ì¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬ÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬µãEÔÚxÖáÉÏ£¬ÉèµãE£¨t£¬0£©£¬Ô²EµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬ÓÉ´ËÀûÓÃÄÚÇÐÔ²¶¨Òå½áºÏÒÑÖªÌõ¼þÄÜÇó³öÍÖÔ²C´æÔÚ·ûºÏÌõ¼þµÄÄÚÇÐÔ²·½³Ì£®
½â´ð ½â£º£¨¢ñ£©ÉèF£¨c£¬0£©£¬Áîx=c£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ
y2=b2£¨1-$\frac{{c}^{2}}{{a}^{2}}$£©£¬½âµÃy=¡À$\frac{{b}^{2}}{a}$£¬
ÓÉÌâÒâ¿ÉµÃ£¬$\frac{{b}^{2}}{a}$=$\frac{1}{2}$£¬$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2-b2=c2£¬
½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£®
¡àÍÖÔ²·½³ÌÊÇ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÒÔÉèP1£¨m£¬n£©£¬P2£¨m£¬-n£©£¬
µãEÔÚxÖáÉÏ£¬ÉèµãE£¨t£¬0£©£¬
ÔòÔ²EµÄ·½³ÌΪ£º£¨x-t£©2+y2=£¨m-t£©2+n2£¬
ÓÉÄÚÇÐÔ²¶¨ÒåÖªµÀ£¬ÍÖÔ²Éϵĵ㵽µãE¾àÀëµÄ×îСֵÊÇ|P1E|£¬
ÉèµãM£¨x£¬y£©ÊÇÍÖÔ²CÉÏÈÎÒâÒ»µã£¬
Ôò|ME|2=£¨x-t£©2+y2=$\frac{3}{4}$x2-2tx+t2+1£¬
µ±x=mʱ£¬|ME|2×îС£¬¡àm=-$\frac{-2t}{\frac{3}{2}}$=$\frac{4t}{3}$£¬¢Ù£¬
ÓÖÔ²E¹ýµãF£¬ËùÒÔ£¨-$\sqrt{3}$-t£©2=£¨m-t£©2+n2£¬¢Ú£¬
µãP1ÔÚÍÖÔ²ÉÏ£¬¡àn2=1-$\frac{{m}^{2}}{4}$£¬¢Û£¬
ÓÉ¢Ù¢Ú¢Û½âµÃ£ºt=-$\frac{\sqrt{3}}{2}$»òt=-$\sqrt{3}$£¬
ÓÖt=-$\sqrt{3}$ʱ£¬m=-$\frac{4\sqrt{3}}{3}$£¼-2£¬²»ºÏÌâÒ⣬
×ÛÉÏ£ºÔ²ÐÄE£¨-$\frac{\sqrt{3}}{2}$£¬0£©£¬m=-$\frac{2\sqrt{3}}{3}$£¬n2=$\frac{2}{3}$£¬
¼´ÓÐÔ²EµÄ·½³ÌΪ£¨x+$\frac{\sqrt{3}}{2}$£©2+y2=$\frac{3}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÄÔËÓã¬Í¬Ê±¿¼²éÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓöԳÆÐÔÊǽâÌâµÄ¹Ø¼ü£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | 30¡ã | B£® | 60¡ã | C£® | 90¡ã | D£® | 120¡ã |
£¨1£©ÊÔ¹À¼Æ¸ÃÊÐ2014ÄêPÖµµÄÈÕƽ¾ùÖµ£»
£¨2£©°ÑƵÂÊÊÓ×÷¸ÅÂÊ£¬Çó¸ÃÊеĺóÐø3Ììʱ¼äÀïÖÁÉÙÓÐ1Ìì¿ÕÆøÖÊÁ¿³¬±êµÄ¸ÅÂÊ£»
£¨3£©´ÓÕâ10ÌìµÄPÖµÊý¾ÝÖÐÈÎÈ¡3ÌìµÄÊý¾Ý£¬½«ÆäÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊý¼ÇΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
PM2.5ÈÕ¾ùÖµ£¨Î¢¿Ë/Á¢·½Ã×£©·¶Î§ | ¿ÕÆøÖÊÁ¿¼¶±ð |
£¨1£¬35] | 1¼¶ |
£¨35£¬75] | 2¼¶ |
´óÓÚ75 | ³¬±ê |