题目内容
【题目】已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为 ,且过点( ,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.
【答案】解:(Ⅰ)设椭圆的方程为 ,则 , a, ∴ ,
∵椭圆过点 ,∴ ,解得 a2=25,b2=9,
故椭圆C的方程为
(Ⅱ)设A(x1 , y1),B(x2 , y2)分别为直线l与椭圆和圆的切点,
直线AB的方程为y=kx+m,因为A既在椭圆上,又在直线AB上,
从而有 ,消去y得:(25k2+9)x2+50kmx+25(m2﹣9)=0,
由于直线与椭圆相切,
故△=(50kmx)2﹣4(25k2+9)×25(m2﹣9)=0,从而可得:m2=9+25k2 , ①,x1= ,②
由 .消去y得:(k2+1)x2+2kmx+m2﹣R2=0,
由于直线与圆相切,得m2=R2(1+k2),③,x2= ,④
由②④得:x2﹣x1= ,由①③得:k2= ,
∴|AB|2=(x2﹣x1)2+(y2﹣y1)2=(1+k2)(x2﹣x1)2
= =
即|AB|≤2,当且仅当R= 时取等号,所以|AB|的最大值为2
【解析】(Ⅰ)设出椭圆的方程,根据离心率及椭圆过点( ,1)求出待定系数,即得椭圆的方程.(Ⅱ)用斜截式设出直线的方程,代入椭圆的方程,化为关于x的一元二次方程,利用根与系数的关系,化简|AB|的解析式并利用基本不等式求出其最大值.
【考点精析】认真审题,首先需要了解椭圆的标准方程(椭圆标准方程焦点在x轴:,焦点在y轴:).
练习册系列答案
相关题目