题目内容
某射手进行射击训练,假设每次射击击中目标的概率为3 | 5 |
(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);
(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);
分析:(1)根据每次射击击中目标的概率为
,且各次射击的结果互不影响,得到每一个事件之间的关系是相互独立的,在3次射击中至少有两次连续击中目标包括两次连续射中目标,或者三次连续射中目标,这两种情况是互斥的,得到结果.
(2)射手第3次击中目标时,恰好射击了4次,表示在这四次射击时,前三次恰有两次击中目标,第四次一定击中目标,根据独立重复试验和相互独立事件同时发生的概率,得到结果.
3 |
5 |
(2)射手第3次击中目标时,恰好射击了4次,表示在这四次射击时,前三次恰有两次击中目标,第四次一定击中目标,根据独立重复试验和相互独立事件同时发生的概率,得到结果.
解答:解:(1)∵每次射击击中目标的概率为
,且各次射击的结果互不影响,
∴射手在三次射击时,每一个事件之间的关系是相互独立的,
设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率
P1=P(A•A•
)+P(
•A•A)+P(A•A•A)
=
×
×
+
×
×
+
×
×
=
(2)∵射手第3次击中目标时,恰好射击了4次,
表示在这四次射击时,前三次恰有两次击中目标,第四次一定击中目标,
∴射手第3次击中目标时,恰好射击了4次的概率
P2=
×(
)2×
×
=
3 |
5 |
∴射手在三次射击时,每一个事件之间的关系是相互独立的,
设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率
P1=P(A•A•
. |
A |
. |
A |
=
3 |
5 |
3 |
5 |
2 |
5 |
2 |
5 |
3 |
5 |
3 |
5 |
3 |
5 |
3 |
5 |
3 |
5 |
63 |
125 |
(2)∵射手第3次击中目标时,恰好射击了4次,
表示在这四次射击时,前三次恰有两次击中目标,第四次一定击中目标,
∴射手第3次击中目标时,恰好射击了4次的概率
P2=
C | 2 3 |
3 |
5 |
2 |
5 |
3 |
5 |
162 |
625 |
点评:本题考查独立重复试验的概率,考查相互独立事件的概率,是一个易错题,易错点在对于射手第3次击中目标时恰好射击了4次的理解,最后一次一定是击中,容易忽略.
练习册系列答案
相关题目