题目内容
某校高三2班有48名学生进行了一场投篮测试,其中男生28人,女生20人.为了了解其投篮成绩,甲、乙两人分别对全班的学生进行编号(1~48号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
(参考公式:,其中)
(Ⅰ)从甲抽取的样本数据中任取两名同学的投篮成绩,记“抽到投篮成绩优秀”的人数为X,求X的分布列和数学期望;
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅰ)的分布列为
.
(Ⅱ)列联表:
有95%以上的把握认为投篮成绩与性别有关.
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样.投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优.
.
(Ⅱ)列联表:
| 优秀 | 非优秀 | 合计 |
男 | 6 | 1 | 7 |
女 | 1 | 4 | 5 |
合计 | 7 | 5 | 12 |
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样.投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优.
试题分析:(Ⅰ)由“抽到投篮成绩优秀”的人数为X,其所有可能取值为.
计算可得相应概率,得到的分布列为
计算得到数学期望.
(Ⅱ)由乙抽取的样本数据,得到列联表,应用“卡方公式”计算“卡方”并与临界值表对照,得出结论.
(Ⅲ)对照系统抽样、分层抽样的定义.确定抽样方法,由(Ⅱ)的结论,并且从样本数据能看出投篮成绩与性别有明显差异,得到结论.
试题解析:(Ⅰ)由甲抽取的样本数据可知,投篮成绩优秀的有7人,投篮成绩不优秀的有5人.
X的所有可能取值为. 1分
所以,,.4分
故的分布列为
∴. 6分
(Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表如下:
| 优秀 | 非优秀 | 合计 |
男 | 6 | 1 | 7 |
女 | 1 | 4 | 5 |
合计 | 7 | 5 | 12 |
的观测值3.841, 9分
所以有95%以上的把握认为投篮成绩与性别有关. 10分
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 11分
由(Ⅱ)的结论知,投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优. 13分
练习册系列答案
相关题目