题目内容
已知数列中,,,若数列满足.
(Ⅰ)证明:数列是等差数列,并写出的通项公式;
(Ⅱ)求数列的通项公式及数列中的最大项与最小项.
【答案】
(Ⅰ)详见解析;(Ⅱ),最大项为,最小项为.
【解析】
试题分析:(Ⅰ)首先通过已知条件化简变形,凑出这种形式,凑出常数,
就可以证明数列是等差数列,并利用等差数列的通项公式求出通项公式;(Ⅱ)因为与有关,所以利用的通项公式求出数列的通项公式,把通项公式看成函数,利用函数图像求最大值和最小值.
试题解析:(Ⅰ)∵,∴,∴,
∴,∴数列是以1为公差的等差数列. 4分
∵,∴,又∵,,
∴是以为首项,为公差的等差中项.
∴, . 7分
(Ⅱ)∵,,.
∴作函数的图像如图所示:
∴由图知,在数列中,最大项为,最小项为. 13分
另解:,当时,数列是递减数列,且.
列举;;.所以在数列中,最大项为,最小项为.
考点:1.等差数列的证明方法;2.利用函数图像求数列的最值.
练习册系列答案
相关题目