题目内容
计算:
(1)π0+2-2×(2
)
;
(2)0.064-
-(-
)0+16
+0.25
;
(3)(
)
×(
)-1+4×(
)-
;
(4)
(a>0,b>0);
(5)
.
(1)π0+2-2×(2
1 |
4 |
1 |
2 |
(2)0.064-
1 |
3 |
1 |
8 |
3 |
4 |
1 |
2 |
(3)(
9 |
25 |
1 |
2 |
1 |
10 |
8 |
27 |
2 |
3 |
(4)
a-4b2•
|
(5)
(a
| ||||||||
|
分析:(1)先求π的0次幂,后一个式子变代分数为假分数开方;
(2)含0次幂的值为1,其它三个式子直接变分数指数幂为根式计算;
(3)含负指数幂的取倒数运算;
(4)变根式为分数指数幂,计算步骤由里向外;
(5)变根式为分数指数幂,然后用同底数幂相乘或相除运算.
(2)含0次幂的值为1,其它三个式子直接变分数指数幂为根式计算;
(3)含负指数幂的取倒数运算;
(4)变根式为分数指数幂,计算步骤由里向外;
(5)变根式为分数指数幂,然后用同底数幂相乘或相除运算.
解答:解:(1)π0+2-2×(2
)
=1+
×
=1+
×
=
;
(2)0.064-
-(-
)0+16
+0.25
=
-1+
+
=
-1+8+0.5=10;
(3)(
)
×(
)-1+4×(
)-
=
×10+4×
=
×10+4×
=15;
(4)
=
=
=
=a-
b
;
(5)
=
=a-
+
-
b
+
-
=a0b0=1.
1 |
4 |
1 |
2 |
1 |
4 |
|
1 |
4 |
3 |
2 |
11 |
8 |
(2)0.064-
1 |
3 |
1 |
8 |
3 |
4 |
1 |
2 |
1 | |||
|
4 | 163 |
0.25 |
1 |
0.4 |
(3)(
9 |
25 |
1 |
2 |
1 |
10 |
8 |
27 |
2 |
3 |
|
3 | (
| ||
3 |
5 |
9 |
4 |
(4)
a-4b2•
|
a-4b2a
|
a-4+
|
a-
|
11 |
6 |
4 |
3 |
(5)
(a
| ||||||||
|
a-
| ||||||||
a
|
1 |
3 |
1 |
2 |
1 |
6 |
1 |
2 |
1 |
3 |
5 |
6 |
点评:本题考查了有理指数幂的化简与求值,考查了有理指数幂的计算方法,解答的关键是熟记有理指数幂的运算性质,属解题思路容易,但极易运算出错的题型.
练习册系列答案
相关题目