题目内容

如图2-3-14,已知⊙O是△ABC的外接圆,∠ACB =45°,∠ABC=120°,⊙O的半径为1.

图2-3-14

(1)求弦ACAB的长;

(2)若PCB延长线上的一点,试确定P点的位置,使得PA与⊙O相切,并证明你的结论.

思路分析:(1)要求AC,可在△AOC中求解,求AB,可在△AOB中求解.?

(2)要确定P的位置,只需求PB,可在△APB中求解,过PPEAB,则将斜三角形分解为直角三角形.

解:(1)过OODACD,?

∵∠ABC=120°,则∠AOC=120°.?

OA =OC,?

∴∠OAD =∠OCD=30°.?

在Rt△AOD中,cos∠OAD =,又OA =1,?

AD =OA·cos30°=.∴AC =2AD =.?

在△AOB中,OA =OB =1,∠AOB =2∠ACB =90°,∴.?

(2)过PPEABE,BE =a,?

∵∠ABP =180°-∠ABC =60°,?

∴∠BPE =30°.∴BP =2BE =2a.?

在Rt△BPE中,PE = =.?

PA切⊙OA,∴∠OAP =90°.?

∵∠OAB =45°,∴∠PAE =45°.?

在Rt△PAE中,AE =PE =,?

又∵AE +EB =AB =,?

,解得.?

PB =2a =-.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网