题目内容
计算:
(1)lg22+lg5•lg20-1;
(2)(
•
)6-4(
)-
-
•80.25-(-2013)0.
(1)lg22+lg5•lg20-1;
(2)(
3 | 2 |
3 |
16 |
49 |
1 |
2 |
4 | 2 |
分析:(1)把lg5化为1-lg2,lg20化为1+lg2,展开平方差公式后整理即可;
(2)化根式为分数指数幂,化小数指数为分数指数,化负指数为正指数,然后进行有理指数幂的化简求值.
(2)化根式为分数指数幂,化小数指数为分数指数,化负指数为正指数,然后进行有理指数幂的化简求值.
解答:解:(1)lg22+lg5•lg20-1
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0;
(2)(
•
)6-4(
)-
-
•80.25-(-2013)0
=(2
•3
)6-4[(
)-2]-
-2
•(23)
-1
=2
×6•3
×6-4×
-2
•23×
-1
=22•33-7-2-1=98.
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0;
(2)(
3 | 2 |
3 |
16 |
49 |
1 |
2 |
4 | 2 |
=(2
1 |
3 |
1 |
2 |
7 |
4 |
1 |
2 |
1 |
4 |
1 |
4 |
=2
1 |
3 |
1 |
2 |
7 |
4 |
1 |
4 |
1 |
4 |
=22•33-7-2-1=98.
点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.
练习册系列答案
相关题目