题目内容

设命题P:对任意实数,不等式x2-2x>m恒成立;命题:方程
x2
m-3
+
y2
5-m
=1
表示焦点在x轴上的双曲线.
(Ⅰ)若命题q为真命题,求实数m的取值范围;
(Ⅱ)若命题“p∨q””为真命题,且“p∧q”为假命题,求实数m的取值范围.
(1)若方程
x2
m-3
+
y2
5-m
=1
表示焦点在x轴上的双曲线,
m-3>0
5-m<0
?m>5

即命题q为真命题时,实数m的取值范围是(5,+∞)(5分)
(2)若命题p真,即对任意实数,不等式x2-2x-m>0恒成立.
∴△=4+4m<0,可得m<-1
p∨q为真命题,p∧q为假命题,说明“p真q假”成立,或“p假q真”成立,
①如果“p真q假”成立,则有
m<-1
m≤5
?m<-1
(9分)
②如果“p假q真”成立,则有
m≥-1
m>5
?m>5
(12分)
所以实数的取值范围为m<-1或m>5(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网