题目内容

【题目】已知函数f(x)= sin(x+ )﹣ cos(x+ ),若存在x1 , x2 , x3 , …,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+… ,则n的最小值为(
A.6
B.10
C.8
D.12

【答案】C
【解析】解:函数f(x)= sin(x+ )﹣ cos(x+ ) 化简可得:f(x)=sin(x+ )=sinx.
∴|f(xn1)﹣f(xn)|=f(x)max﹣f(x)min=2.
则|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+f(xn1)﹣f(xn)=12的n最小,
须取x的区分别为:x1=0,x2= ,x8=6π.
则n的最小值为8.
故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网