题目内容
如果函数f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数,那么实数a取值范围是
- A.a≤-3
- B.a≥-3
- C.a≤5
- D.a≥5
A
分析:先用配方法将二次函数变形,求出其对称轴,再由“在(-∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.
解答:∵f(x)=x2+2(a-1)x+2=(x+a-1)2+2-(a-1)2
其对称轴为:x=1-a
∵函数f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数
∴1-a≥4
∴a≤-3
故选A
点评:本题主要考查二次函数的单调性,解题时要先明确二次函数的对称轴和开口方向,这是研究二次函数单调性和最值的关键.
分析:先用配方法将二次函数变形,求出其对称轴,再由“在(-∞,4]上是减函数”,知对称轴必须在区间的右侧,求解即可得到结果.
解答:∵f(x)=x2+2(a-1)x+2=(x+a-1)2+2-(a-1)2
其对称轴为:x=1-a
∵函数f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数
∴1-a≥4
∴a≤-3
故选A
点评:本题主要考查二次函数的单调性,解题时要先明确二次函数的对称轴和开口方向,这是研究二次函数单调性和最值的关键.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|