题目内容

已知f(x)=
x2+1
-1
x
(x>0)
数列{an}满足a1=a>0且an=f-1(an+1),
(1)求函数y=f(x)的反函数;
(2)求证:an≤(
1
2
)n-1a

(3)若a=1试比较an与2-n的大小.
分析:(1)根据反函数的求法步骤知,先用y来表示x,同时得到y的取值范围即可.
(2)利用放缩法得到an>2an+1
an+1
an
1
2
,将不等式代入an=(
an
an-1
an-1
an-2
a2
a1
)•a1
中即可得到结论.
(3)由an=
2an+1
1-
a
n+1
2
变形an=
2an+1
1-
a
2
n+1
2an+1
1-an+1
?
1
an
1
2an+1
-
1
2
,即
1
an+1
+1<2(
1
an
+1)∴
1
an
+1<2n-1(
1
a1
+1)=2n
,再化简得an>2-n
解答:解:(1)由y=
x2+1
-1
x
x=
2y
1-y2
>0?0<y<1

所以y=f(x)的反函数为f-1(x)=
2x
1-x2
(0<x<1)

(2)∵an+1=f(an)∴an=f-1(an+1)即an=
2an+1
1-
a
2
n+1

由a1=a>0可得0<an+1<1
an=
2an+1
1-
a
2
n+1
>2an+1
an+1
an
1
2

当n≥2时,an=(
an
an-1
an-1
an-2
… 
a2
a1
)•a1(
1
2
)
n-1
a

(3)∵0<an+1<1∴an=
2an+1
1-
a
2
n+1
2an+1
1-an+1
?
1
an
1
2an+1
-
1
2

1
an+1
2
an
+1
1
an+1
+1<2(
1
an
+1)∴
1
an
+1<2n-1(
1
a1
+1)=2n

an
1
2n-1
1
2n
=2-n
即an>2-n
点评:此题考查了反函数的求法,和放缩法在不等式中的应用.在运用放缩法时关键要注意不等关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网