题目内容

△ABC内有任意三点不共线的2008个点,加上A,B,C三个顶点,共2011个点,将这2011个点连线形成互不重叠的小三角形,则一共可以形成小三角形的个数为( )
A.4015
B.4017
C.4019
D.4020
【答案】分析:根据题意,分析易得:△ABC中有1个点时,△ABC中有2个点时,△ABC中有3个点时,可以形成小三角形的个数,由归纳推理的方法可得当三角形中有n个点时,可以形成三角形的个数,将n=2008代入可得答案.
解答:解:△ABC中有1个点时,可以形成小三角形的个数为2×1+1=3个,
△ABC中有2个点时,可以形成小三角形的个数为2×2+1=5个,
△ABC中有3个点时,可以形成小三角形的个数为2×3+1=7个,
…,
分析可得,当△ABC的内部每增加一个点,可以形成小三角形的数目增加2个,
则三角形中有n个点时,三角形的个数为(2n+1)个;
当△ABC内有任意三点不共线的2008个点时,应有点2×2008+1=4017;
故选A.
点评:本题考查图形的变化规律,关键是分析得到三角形的个数与三角形内点的个数的变化规律.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网