题目内容

(2012•杨浦区二模)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=30米,并在点C测得塔顶A的仰角为60°,则塔高AB=
45
2
45
2
米.
分析:先根据三角形内角和为180°得∠CBD=180°-75°-60°=45°,再根据正弦定理求得BC,进而在Rt△ABC中,根据AB=BCtan∠ACB求得AB.
解答:解:在△BCD中,∠CBD=180°-75°-60°=45°
由正弦定理得
BC
sin∠BDC
=
CD
sin∠CBD

所以BC=
CDsin∠BDC
sin∠CBD
=
30×sin60°
sin45°
=15
6

在Rt△ABC中,∠ACB=60°,
∴AB=BCtan∠ACB=15
6
tan60°=45
2

故答案为:45
2
点评:本题以实际问题为载体,考查解三角形的实际应用.正弦定理、余弦定理是解三角形问题常用方法,应熟练记忆.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网