题目内容

如右图所示,正方体ABCD-A1B1C1D1中,E、F分别是正方形ADD1A1和ABCD的中心,G是CC1的中点,设GF、C1E与AB所成的角分别为α、β,则α+β等于( )

A.120°
B.60°
C.75°
D.90°
【答案】分析:本题适合建立空间坐标系得用向量法解决这个立体几何问题,建立空间坐标系,给出有关点的坐标,求出直线的GF、C1E与AB的方向向量,利用夹角公式求线线角的余弦值即可.
解答:解:建立坐标系如图,
B(2,0,0),A(2,2,0),G(0,0,1),F(1,1,0),C1(0,0,2),E(1,2,1).
=(0,2,0),=(1,1,-1),=(1,2,-1),
∴cos<>=
cos<>=,∴cosα=
cosβ=,sinβ=,∴α+β=90°,
故选D
点评:考查用空间向量为工具解决立体几何问题,此类题关键是找清楚线的方向向量,最后利用夹角公式计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网