题目内容
(06年广东卷)(14分)
已知公比为的无穷等比数列各项的和为9,无穷等比数列各项的和为.
(Ⅰ)求数列的首项和公比;
(Ⅱ)对给定的,设是首项为,公差为的等差数列.求数列的前10项之和;
(Ⅲ)设为数列的第项,,求,并求正整数,使得
存在且不等于零.
(注:无穷等比数列各项的和即当时该无穷数列前n项和的极限)
解析:(Ⅰ)依题意可知,
(Ⅱ)由(Ⅰ)知,,所以数列的的首项为,公差,
,即数列的前10项之和为155.
(Ⅲ) ===,
,=
当m=2时,=-,当m>2时,=0,所以m=2
练习册系列答案
相关题目