题目内容
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:t | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
A.
B.
C.
D.
【答案】分析:通过排除法进行求解,由y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,故可以把已知数据代入y=k+Asin(ωx+φ)中,根据周期和函数值排除,即可求出答案.
解答:解:由于y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,根据港口某一天从0时至24时记录的时间t与水深y的关系,可得函数的周期T=12可排除A、D,
将(3,15)代入B,C,可排除B,C满足.
故选C
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属于基础题.
解答:解:由于y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,根据港口某一天从0时至24时记录的时间t与水深y的关系,可得函数的周期T=12可排除A、D,
将(3,15)代入B,C,可排除B,C满足.
故选C
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属于基础题.
练习册系列答案
相关题目
设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
经观察,y=f(t)可以近似看成y=K+Asin(ωx+φ)的图象,下面的函数中最能近似地表示表中数据对应关系的函数是( )
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
A、y=12+3sin
| ||||
B、y=12+3sin(
| ||||
C、y=12+3sin
| ||||
D、y=12+3sin(
|
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
|
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
- A.
- B.
- C.
- D.
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象,下面的函数中,最能近似表示表中数据间对应关系的函数是(t∈[0,24])( )
| A. |
| B. |
|
| C. |
| D. |
|