ÌâÄ¿ÄÚÈÝ
ÊýÁÐ{an}£¬{bn}Âú×㣺
|
£¨1£©µ±a1=1ʱ£¬ÇóÖ¤£º{an}²»ÊǵȲîÊýÁУ»
£¨2£©µ±k=-
1 |
2 |
£¨3£©µ±k=-
1 |
2 |
1 |
3 |
2 |
3 |
·ÖÎö£º£¨1£©ÒªÖ¤Ã÷£º{an}²»ÊǵȲîÊýÁУ¬ÎÒÃÇÖ»Òª¾Ù³ö²¢²»ÊÇËùÓÐÏîÓëÇ°Ò»ÏîµÄ»ý¶¼Îª¶¨Öµ¼´¿É£¬ÎÒÃÇ¿ÉÒÔ¸ù¾ÝÒÑÖªÌõ¼þ£¬·Ö±ðÇó³öa1£¬a2£¬a3£¬ÔÙ½øÐÐÅжϣ¬Ò׵ýáÂÛ£®
£¨2£©µ±k=-
ʱ£¬ÎÒÃÇÓÉ
£¬(k¡ÊR)£®¿ÉÒÔÊýÁÐ{bn}µÄͨÏʽ£¬ÔÙÓÉÊýÁÐ{bn}ÊǵȱÈÊýÁÐʱ£¬¸÷ÏîÖµ¼°¹«±È¾ù²»ÎªÁ㣬²»Äѵõ½ÊµÊýa1Âú×ãµÄÌõ¼þ
£¨3£©µ±k=-
ʱ£¬ÎÒÃÇÓÉ£¨2£©µÄ½áÂÛ£¬¶ÔʵÊýa1½øÐзÖÀàÌÖÂÛ£¬¼´·ÖΪ£ºÊýÁÐ{bn}²»ÊǵȱÈÊýÁкÍÊýÁÐ{bn}ÊǵȱÈÊýÁÐÁ½ÖÖÇé¿ö£¬×îºó½«Ã¿ÀàÇé¿öµÃµ½µÄ½áÂÛ½øÐлã×Ü£¬¼´¿ÉµÃµ½´ð°¸£®
£¨2£©µ±k=-
1 |
2 |
|
£¨3£©µ±k=-
1 |
2 |
½â´ð£ºÖ¤Ã÷£º£¨1£©a1=1£¬a2=k+1£¬a3=k2+k+2£¬
ÓÖk2+k+2+1-£¨2k+2£©=k2-k+1£¬¶øk2-k+1=0ÎÞʵÊý½â£¬
Ôò2a2¡Ùa1+a3£¬´Ó¶ø{an}²»ÊǵȲîÊýÁУ®
£¨2£©µ±k=-
ʱ£¬an+1=-
an+n£¬b1=a1-
£¬
ÒòΪbn+1=an+1-
(n+1)+
=-
bn£¬¹Êbn+1=(-
)n-1(a1-
)£¬
´Ó¶øµ±a1¡Ù
ʱ£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ»
£¨3£©µ±k=-
£¬a1=
ʱ£¬Sn=0£¬²»Âú×ãÌâÉ裬¹Êa1¡Ù
£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ®
ÆäÊ×ÏîΪb1=a1-
£¬¹«±ÈΪ-
£¬ÓÚÊÇSn=
(a1-
)[1-(-
)n]£®
Èô
¡ÜSn¡Ü
£¬Ôò
+
¡Üa1¡Ü
+
¶ÔÈÎÒâÕýÕûÊýnºã³ÉÁ¢£¬
¶ø1-(-
)nµÃ×î´óֵΪ
£¬×îСֵΪ
£¬Òò´Ë
¡Üa1¡Ü
£¬¼´a1=
ʱ£¬³ÉÁ¢£®
ÓÖk2+k+2+1-£¨2k+2£©=k2-k+1£¬¶øk2-k+1=0ÎÞʵÊý½â£¬
Ôò2a2¡Ùa1+a3£¬´Ó¶ø{an}²»ÊǵȲîÊýÁУ®
£¨2£©µ±k=-
1 |
2 |
1 |
2 |
2 |
9 |
ÒòΪbn+1=an+1-
2 |
3 |
4 |
9 |
1 |
2 |
1 |
2 |
2 |
9 |
´Ó¶øµ±a1¡Ù
2 |
9 |
£¨3£©µ±k=-
1 |
2 |
2 |
9 |
2 |
9 |
ÆäÊ×ÏîΪb1=a1-
2 |
9 |
1 |
2 |
2 |
3 |
2 |
9 |
1 |
2 |
Èô
1 |
3 |
2 |
3 |
1 | ||
2[1-(-
|
2 |
9 |
1 | ||
1-(-
|
2 |
9 |
¶ø1-(-
1 |
2 |
3 |
2 |
3 |
4 |
8 |
9 |
8 |
9 |
8 |
9 |
µãÆÀ£ºÒªÅжÏÒ»¸öÊýÁÐÊÇ·ñΪµÈ²î£¨±È£©ÊýÁУ¬ÎÒÃdz£ÓÃÈçϼ¸ÖÖ°ì·¨£º¢Ù¶¨Òå·¨£»¢ÚµÈ²î£¨±È£©ÖÐÏî·¨£»¢ÛͨÏʽ·¨£»¢ÜÇ°nÏîºÍ¹«Ê½·¨£®µ«ÒªÅжÏÒ»¸öÊýÁв»ÎªµÈ²î£¨±È£©ÊýÁУ¬Ö»Òª¾Ù³öÒ»¸ö·´Àý¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿