题目内容

【题目】如图,在四棱锥中,底面为梯形,,面的中点.

1)求证:

2)在线段上是否存在一点,使得?若存在,请证明你的结论;若不存在,请说明理由.

【答案】1)证明见解析;(2)存在,证明见解析

【解析】

1)可作中点,连接,通过底面梯形的性质可证四边形为正方形,求出边,通过勾股定理可证,再结合面,面,可证,得到,即可得证;

2)可将问题转化,在底面找一点使得,即可求证;

1)取中点,连接

所以四边形为平行四边形,

又∵

所以四边形为正方形.

中,因为,所以

中,因为,所以

因为,所以

因为,面,面

所以

因为

所以.

2)线段上存在一点,满足

中点时,

证明如下:连结,∵的中点,中点,

又∵,所以

,∴.

练习册系列答案
相关题目

【题目】201912月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019COVID19),简称“新冠肺炎”.下图是2020115日至124日累计确诊人数随时间变化的散点图.

为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据115日至124日的数据(时间变量t的值依次12,…,10)建立模型.

1)根据散点图判断,哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)

2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;

3)以下是125日至129日累计确诊人数的真实数据,根据(2)的结果回答下列问题:

时间

125

126

127

128

129

累计确诊人数的真实数据

1975

2744

4515

5974

7111

(ⅰ)当125日至127日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?

(ⅱ)2020124日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?

附:对于一组数据(,……,,其回归直线的斜率和截距的最小二乘估计分别为.

参考数据:其中.

5.5

390

19

385

7640

31525

154700

100

150

225

338

507

【题目】2019年,中国的国内生产总值(GDP)已经达到100亿元人民币,位居世界第二,这其中实体经济的贡献功不可没,实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:

根据以上数据绘制了如下的散点图

现考虑用反比例函数模型和指数函数模型分别对两个变量关系进行拟合,为此变换如下:令,则,即也满足线性关系,令,则,即也满足线线关系,这样就可以使用最小二乘法求得非线性回归方程,已求得用指数函数模型拟合的回归方程为的相关系数,其他参考数据如下(其中

1)求指数函数模型和反比例函数模型中关于的回归方程;

2)试计算的相关系数,并用相关系数判断:选择反比例函数和指数函数两个模型中哪一个拟合效果更好(精确到0.01)?

3)根据(2)小题的选择结果,该企业采用订单生产模式(即根据订单数量进行生产,产品全部售出),根据市场调研数据,该产品定价为100元时得到签到订单的情况如下表:

订单数(千件)

1

2

3

4

5

6

7

8

9

10

11

概率

已知每件产品的原来成本为10元,试估算企业的利润是多少?(精确到1千元)

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别是:相关系数:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网