题目内容

2.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,则f[f(-1)]=1;若f(x0)<1,则x0的取值范围是-1≤x0<1.

分析 直接利用分段函数求解函数值,通过分类讨论求解不等式的解集即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,则f[f(-1)]=f(1)=log2(1+1)=1.
f(x0)<1,当x0≤0时,${2}^{-{x}_{0}}-1<1$,解得-1≤x0≤0.
当x0>0时,log2(x0+1)<1,解得x0<1.
综上-1≤x0<1.
故答案为:1;-1≤x0<1.

点评 本题考查分段函数的应用,函数值的求法,分类讨论思想的应用,指数对数不等式的解法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网