题目内容
(2013•济南二模)某企业计划投资A,B两个项目,根据市场分析,A,B两个项目的利润率分别为随机变量X1和X2,X1和X2的分布列分别为:
(1)若在A,B两个项目上各投资1000万元,Y1和Y2分别表示投资项目A和B所获得的利润,求利润的期望E(Y1),E(Y2)和方差D(Y1),D(Y2);
(2)由于资金限制,企业只能将x(0≤x≤1000)万元投资A项目,1000-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.
X1 | 5% | 10% |
P | 0.8 | 0.2 |
X2 | 2% | 8% | 12% |
P | 0.2 | 0.5 | 0.3 |
(2)由于资金限制,企业只能将x(0≤x≤1000)万元投资A项目,1000-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和.求f(x)的最小值,并指出x为何值时,f(x)取到最小值.
分析:(1)Y1和Y2分别表示投资项目A和B所获得的利润,根据两个投资项目的利润率分别为随机变量X1和X2的分布列,可以得到Y1和Y2的分布列,得到分布列,余下的问题只是运算问题,分别求出变量的期望和方差.
(2)由题意知f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和,写出用x表示的方差的解析式,结合二次函数的最值问题,得到结果.
(2)由题意知f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和,写出用x表示的方差的解析式,结合二次函数的最值问题,得到结果.
解答:解:(1)由题设可知Y1和Y2的分布列为
--------------(2分)
E(Y1)=50×0.8+100×0.2=60,----------------------------------(3分)
D(Y1)=(50-60)2×0.8+(100-60)2×0.2=400,------------------------(4分)
E(Y2)=20×0.2+80×0.5+120×0.3=80,---------------------------------------(5分)
D(Y2)=(20-80)2×0.2+(80-80)2×0.5+(120-80)2×0.3=1200.-------------------(6分)
(2)f(x)=D(
Y1)+D(
Y2)=
[x2D(Y1)+(1000-x)2D(Y2)]
=
[x2+3(1000-x)2]=
(4x2-6000x+3×106).--------------------------------(10分)
当x=
=750时,f(x)=300为最小值.-------------------------------(12分)
Y1 | 50 | 100 |
P | 0.8 | 0.2 |
Y2 | 20 | 80 | 120 |
P | 0.2 | 0.5 | 0.3 |
E(Y1)=50×0.8+100×0.2=60,----------------------------------(3分)
D(Y1)=(50-60)2×0.8+(100-60)2×0.2=400,------------------------(4分)
E(Y2)=20×0.2+80×0.5+120×0.3=80,---------------------------------------(5分)
D(Y2)=(20-80)2×0.2+(80-80)2×0.5+(120-80)2×0.3=1200.-------------------(6分)
(2)f(x)=D(
x |
1000 |
1000-x |
1000 |
1 |
106 |
=
4 |
104 |
4 |
104 |
当x=
6000 |
2×4 |
点评:本题考查离散型随机变量的分布列和期望,这种类型是近几年高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.
练习册系列答案
相关题目