题目内容

【题目】若奇函数y=f(x)在区间(0,+∞)上是增函数,又f(﹣3)=0,则不等式f(x)<0的解集为(
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(0,3)
D.(﹣∞,﹣3)∪(3,+∞)

【答案】C
【解析】解:∵f(x)是奇函数,f(﹣3)=0, ∴f(﹣3)=﹣f(3)=0,解f(3)=0.
∵函数在(0,+∞)内是增函数,
∴当0<x<3时,f(x)<0.
当x>3时,f(x)>0,
∵函数f(x)是奇函数,
∴当﹣3<x<0时,f(x)>0.
当x<﹣3时,f(x)<0,
则不等式f(x)<0的解集{x|x<﹣3或0<x<3}.
故选C.

【考点精析】本题主要考查了奇偶性与单调性的综合的相关知识点,需要掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网