题目内容
已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH的面积为,AE为,则关于的函数图象大致是( )
A B C D
A B C D
B
∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,
∴可证△AEH≌△BFE≌△CGF≌△DHG.
设AE为x,则AH=1-x,根据勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2.
s=2x2-2x+1,
∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选B.
∴可证△AEH≌△BFE≌△CGF≌△DHG.
设AE为x,则AH=1-x,根据勾股定理,得
EH2=AE2+AH2=x2+(1-x)2
即s=x2+(1-x)2.
s=2x2-2x+1,
∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选B.
练习册系列答案
相关题目