题目内容

点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。

(1)直线的方程;(2)当点P运动时,总是相等的.证明详见试题解析.

解析试题分析:(1)先设点的坐标为则可得过点的切线方程,由两点确定一条直线可得的方程;(2)当点运动时,总是相等的.利用向量夹角公式通过计算验证.
试题解析:(1)设点的坐标为则过点的切线方程分别为.因为点在切线上,所以.同理.故直线的方程.                                      5分
(2)当点运动时,总是相等的.设点的坐标为,则由(1)知,
同理.                               13分
考点:1、椭圆的切线方程;2、应用平面向量解决解析几何问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网