题目内容
已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值?
【答案】
x=-2时,f(x) min=-3.
【解析】主要考查对数运算、二次函数、对数函数的图象和性质。
解:由f(-1)=-2 ,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,
∴=10,a=10b.
又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,
由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0
即(lgb-1)2≤0,只有lgb=1,不等式成立.
即b=10,∴a=100.
∴f(x)=x2+4x+1=(2+x)2-3
当x=-2时,f(x) min=-3.
练习册系列答案
相关题目