题目内容
已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:①TA⊥BC,TB⊥AC,TC⊥AB;
②△ABC是锐角三角形;
③;
④(注:S△ABC表示△ABC的面积)
其中正确的是 (写出所有正确命题的编号).
【答案】分析:对于①,TA,TB,TC两两垂直可得:直线TA与平面TBC垂直,从而得出:TA⊥BC,同理得到TB⊥AC,TC⊥AB;
对于问题②可以通过余弦定理解决.
对于③,在直角三角形ATE中,利用平面几何中面积相等公式及射影定理即可证得;
对于④,如图作TE⊥CB于E,连AE,则AE⊥CB.S△BCA2 =•AE2 =•(AT2+TE2)再化简即得S△BCA2=S△TBC2+S△ACT2+S△TAB2.
解答:解:对于①,TA,TB,TC两两垂直可得:TA⊥平面TBC,从而得出:TA⊥BC,同理得到TB⊥AC,TC⊥AB,故①正确;
②设TA=a;TB=b;TC=c,则AB2=a2+b2,同理BC2=c2+b2,Ac2=a2+c2,在三角形ABC中,由余弦定理得:,同理可证cosB>0,cosC>0,所以,)△ABC是锐角三角形.
③设TA=a;TB=b;TC=c,在直角三角形TBC中,得:TE=,
在三角形ABC中,有:AE=
由于AE×TD=TA×TE
∴×TD=a×,
∴a2b2c2=(a2b2+b2c2+c2a2)TD 2
∴;成立
故③对
④:S△BCA2=S△TBC2+S△ACT2+S△TAB2.证明如下:
如图作TE⊥CB于E,连AE,则AE⊥CB.
S△BCA2 =•AE2 =•(AT2+TE2)=(TB2+TC2)(AT2+TE2)
=(TB2TC2 +TA2TC2+TA2TB2 )=S△TBC2+S△ACT2+S△TAB2,
故不对;
故答案为:①②③.
点评:本题考查棱锥的结构特征以及解三角形的有关理论,在立体几何中考查平面几何问题,要注意在空间的某个平面内,平面几何的有关定理、公式等结论仍然成立.本题还考查类比推理,属于中档题.
对于问题②可以通过余弦定理解决.
对于③,在直角三角形ATE中,利用平面几何中面积相等公式及射影定理即可证得;
对于④,如图作TE⊥CB于E,连AE,则AE⊥CB.S△BCA2 =•AE2 =•(AT2+TE2)再化简即得S△BCA2=S△TBC2+S△ACT2+S△TAB2.
解答:解:对于①,TA,TB,TC两两垂直可得:TA⊥平面TBC,从而得出:TA⊥BC,同理得到TB⊥AC,TC⊥AB,故①正确;
②设TA=a;TB=b;TC=c,则AB2=a2+b2,同理BC2=c2+b2,Ac2=a2+c2,在三角形ABC中,由余弦定理得:,同理可证cosB>0,cosC>0,所以,)△ABC是锐角三角形.
③设TA=a;TB=b;TC=c,在直角三角形TBC中,得:TE=,
在三角形ABC中,有:AE=
由于AE×TD=TA×TE
∴×TD=a×,
∴a2b2c2=(a2b2+b2c2+c2a2)TD 2
∴;成立
故③对
④:S△BCA2=S△TBC2+S△ACT2+S△TAB2.证明如下:
如图作TE⊥CB于E,连AE,则AE⊥CB.
S△BCA2 =•AE2 =•(AT2+TE2)=(TB2+TC2)(AT2+TE2)
=(TB2TC2 +TA2TC2+TA2TB2 )=S△TBC2+S△ACT2+S△TAB2,
故不对;
故答案为:①②③.
点评:本题考查棱锥的结构特征以及解三角形的有关理论,在立体几何中考查平面几何问题,要注意在空间的某个平面内,平面几何的有关定理、公式等结论仍然成立.本题还考查类比推理,属于中档题.
练习册系列答案
相关题目