题目内容

(2013•湛江二模)已知函数f(x)=2
3
sinxcosx+cos2x

(1)求f(
π
6
)
的值;
(2)设x∈[0,
π
4
]
,求函数f(x)的值域.
分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为 2sin(2x+
π
6
),从而求得f(
π
6
)
的值.
(2)因为0≤x≤
π
4
,再根据正弦函数的定义域和值域,求得函数f(x)的值域.
解答:解:(1)∵f(x)=2
3
sinxcosx+cos2x
=
3
sin2x+cos2x
=2sin(2x+
π
6
)

f(
π
6
)
=2sin(
6
+
π
6
)
=2sin
π
2
=2.
(2)因为0≤x≤
π
4
,所以
π
6
≤2x+
π
6
3
,所以1≤2sin(2x+
π
6
)
≤2,
即函数f(x)的值域为[1,2].
点评:本题主要考查三角函数的恒等变换,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网