ÌâÄ¿ÄÚÈÝ
µÚ¢ñСÌ⣺ÒÑÖªº¯Êýf£¨x£©=x+1£¬Éèg1£¨x£©=f£¨x£©£¬gn£¨x£©=f£¨gn-1£¨x£©£©£¨n£¾1£¬n¡ÊN*£©
£¨1£©Çóg2£¨x£©£¬g3£¨x£©µÄ±í´ïʽ£¬²¢²ÂÏëgn£¨x£©£¨n¡ÊN*£©µÄ±í´ïʽ£¨Ö±½Óд³ö²ÂÏë½á¹û £©
£¨2£©Èô¹ØÓÚxµÄº¯Êýy=x2+
gi(x)(n¡ÊN*)ÔÚÇø¼ä(-¡Þ£¬-
]ÉϵÄ×îСֵΪ6£¬ÇónµÄÖµ£®
µÚ¢òСÌ⣺Éè¹ØÓÚxµÄ²»µÈʽlg£¨|x+3|+|x-7|£©£¾a
£¨1£©µ±a=1ʱ£¬½âÕâ¸ö²»µÈʽ£»£¨2£©µ±aΪºÎֵʱ£¬Õâ¸ö²»µÈʽµÄ½â¼¯ÎªR£®
£¨1£©Çóg2£¨x£©£¬g3£¨x£©µÄ±í´ïʽ£¬²¢²ÂÏëgn£¨x£©£¨n¡ÊN*£©µÄ±í´ïʽ£¨Ö±½Óд³ö²ÂÏë½á¹û £©
£¨2£©Èô¹ØÓÚxµÄº¯Êýy=x2+
n |
i=1 |
1 |
2 |
µÚ¢òСÌ⣺Éè¹ØÓÚxµÄ²»µÈʽlg£¨|x+3|+|x-7|£©£¾a
£¨1£©µ±a=1ʱ£¬½âÕâ¸ö²»µÈʽ£»£¨2£©µ±aΪºÎֵʱ£¬Õâ¸ö²»µÈʽµÄ½â¼¯ÎªR£®
·ÖÎö£ºµÚ¢ñСÌ⣺£¨1£©¸ù¾ÝÌâÒâg1£¨x£©=f£¨x£©=x+1£¬gn£¨x£©=f£¨gn-1£¨x£©£©£¬Áîn=2Çó³ög2£¨x£©µÄ±í´ïʽ£»ÓÉg2£¨x£©£¬gn£¨x£©=f£¨gn-1£¨x£©£©£¬Áîn=2Çó³ög3£¨x£©µÄ±í´ïʽ£¬¹Û²ìÇó³öµÄ±í´ïʽg1£¨x£©£¬g2£¨x£©¼°g3£¨x£©£¬·¢ÏÖÆä¹æÂÉΪnµÈÓÚ¼¸£¬Æä½âÎöʽΪx¼Ó¼¸£¬¸ù¾Ý²ÂÏëд³ögn£¨x£©µÄ±í´ïʽ¼´¿É£»
£¨2£©°Ñ£¨1£©ÖвÂÏë³öµÄgn£¨x£©µÄ±í´ïʽ´úÈëµ½º¯Êý½âÎöʽÖУ¬¸ù¾ÝµÈ²îÊýÁеÄÇóºÍ¹«Ê½»¯¼ò£¬µÃµ½yÓëx³É¶þ´Îº¯Êý¹Øϵ£¬¸ù¾Ý¶þ´Îº¯ÊýÇó×îÖµµÄ·½·¨±íʾ³öyµÄ×î´óÖµ£¬ÈÃÆäµÈÓÚ6Áгö¹ØÓÚnµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½nµÄÖµ£»
µÚ¢òСÌ⣺£¨1£©°Ña=1´úÈë²»µÈʽ£¬ÓɶÔÊýµÄÔËËãÐÔÖÊ»¯¼òºó£¬ÌÖÂÛxµÄÈ¡Öµ»¯¼ò¾ø¶ÔÖµ²»µÈʽ£¬¼´¿ÉÇó³ö²»µÈʽµÄ½â¼¯£»
¸ù¾Ý|x+a|+|x+b|¡Ý|£¨x+a£©-£¨x+b£©|Çó³ö|x+3|+|x-7|µÄ×îСֵ£¬½ø¶ø¸ù¾Ýµ×ÊýΪ10µÄ¶ÔÊýΪÔöº¯Êý£¬Çó³ölg£¨£¨|x+3|+|x-7|£©µÄ×îСֵ£¬ÈÃaСÓÚÇó³öµÄ×îСֵ¼´¿ÉµÃµ½aµÄÈ¡Öµ·¶Î§£®
£¨2£©°Ñ£¨1£©ÖвÂÏë³öµÄgn£¨x£©µÄ±í´ïʽ´úÈëµ½º¯Êý½âÎöʽÖУ¬¸ù¾ÝµÈ²îÊýÁеÄÇóºÍ¹«Ê½»¯¼ò£¬µÃµ½yÓëx³É¶þ´Îº¯Êý¹Øϵ£¬¸ù¾Ý¶þ´Îº¯ÊýÇó×îÖµµÄ·½·¨±íʾ³öyµÄ×î´óÖµ£¬ÈÃÆäµÈÓÚ6Áгö¹ØÓÚnµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½nµÄÖµ£»
µÚ¢òСÌ⣺£¨1£©°Ña=1´úÈë²»µÈʽ£¬ÓɶÔÊýµÄÔËËãÐÔÖÊ»¯¼òºó£¬ÌÖÂÛxµÄÈ¡Öµ»¯¼ò¾ø¶ÔÖµ²»µÈʽ£¬¼´¿ÉÇó³ö²»µÈʽµÄ½â¼¯£»
¸ù¾Ý|x+a|+|x+b|¡Ý|£¨x+a£©-£¨x+b£©|Çó³ö|x+3|+|x-7|µÄ×îСֵ£¬½ø¶ø¸ù¾Ýµ×ÊýΪ10µÄ¶ÔÊýΪÔöº¯Êý£¬Çó³ölg£¨£¨|x+3|+|x-7|£©µÄ×îСֵ£¬ÈÃaСÓÚÇó³öµÄ×îСֵ¼´¿ÉµÃµ½aµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£ºµÚ¢ñСÌ⣺£¨1£©¡ßg1£¨x£©=f£¨x£©=x+1£¬
¡àg2£¨x£©=f£¨g1£¨x£©£©=f£¨x+1£©=£¨x+1£©+1=x+2£¬
g3£¨x£©=f£¨g2£¨x£©£©=f£¨x+2£©=£¨x+2£©+1=x+3£¬
¡à²ÂÏëgn£¨x£©=x+n£»
£¨2£©¡ßgn£¨x£©=x+n£¬
¡à
gi(x)=g1(x)+g2(x)+¡+gn(x)=nx+
£¬
¡ày=x2+
gi(x)=x2+nx+
=(x+
)2+
£¬
¡ßn£¾1£¬n¡ÊN*£¬¡à-
£¼-
£¬
ÓÖ¡ßy=x2+
gi(x)ÔÚÇø¼ä(-¡Þ£¬-
]ÉϵÄ×îСֵΪ6£¬
µ±x=-
ʱ£¬ymin=
=6£¬½âµÃn=4£»
µÚ¢òСÌ⣺£¨1£©ÓÉÌâÒâµÃ£º|x+3|+|x-7|£¾10£¬½âµÃ£ºx£¼-3»òx£¾7£»
£¨2£©¡ß|x+3|+|x-7|µÄ×îСֵΪ10£¬
¡àlg£¨|x+3|+|x-7|£©µÄ×îСֵΪ1
Ҫʹ²»µÈʽµÄ½â¼¯ÎªR£¬ÔòÐëa£¼1£®
¡àg2£¨x£©=f£¨g1£¨x£©£©=f£¨x+1£©=£¨x+1£©+1=x+2£¬
g3£¨x£©=f£¨g2£¨x£©£©=f£¨x+2£©=£¨x+2£©+1=x+3£¬
¡à²ÂÏëgn£¨x£©=x+n£»
£¨2£©¡ßgn£¨x£©=x+n£¬
¡à
n |
i=1 |
n(n+1) |
2 |
¡ày=x2+
n |
i=1 |
n(n+1) |
2 |
n |
2 |
n2+2n |
4 |
¡ßn£¾1£¬n¡ÊN*£¬¡à-
n |
2 |
1 |
2 |
ÓÖ¡ßy=x2+
n |
i=1 |
1 |
2 |
µ±x=-
n |
2 |
n2+2n |
4 |
µÚ¢òСÌ⣺£¨1£©ÓÉÌâÒâµÃ£º|x+3|+|x-7|£¾10£¬½âµÃ£ºx£¼-3»òx£¾7£»
£¨2£©¡ß|x+3|+|x-7|µÄ×îСֵΪ10£¬
¡àlg£¨|x+3|+|x-7|£©µÄ×îСֵΪ1
Ҫʹ²»µÈʽµÄ½â¼¯ÎªR£¬ÔòÐëa£¼1£®
µãÆÀ£º´ËÌ⿼²éÁ˾ø¶ÔÖµ²»µÈʽµÄ½â·¨£¬¶þ´Îº¯ÊýµÄÐÔÖʼ°¶ÔÊýº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËѧÉú¹Û²ìÌõ¼þ£¬×÷³ö²ÂÏ룬¹éÄÉ×ܽáµÄÄÜÁ¦£®¹éÄÉ×ܽáµÃµ½gn£¨x£©µÄ±í´ïʽÊǽâµÚÒ»ÎʵÄÍ»ÆƵ㣻ÔÚ½âµÚ¶þÎÊʱעÒâÔËÓÃ|x+a|+|x+b|¡Ý|£¨x+a£©-£¨x+b£©|Õâ¸öÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿