题目内容

设向量
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2
,已知定点A(1,0),动点P(x,y)
(1)求动点P(x,y)的轨迹C的方程;
(2)过原点O作直线l交轨迹C于两点M,N,若,试求△MAN的面积.
(3)过原点O作直线l与直线x=2交于D点,过点A作OD的垂线与以OD为直径的圆交于点G,H(不妨设点G在直线OD上方),试判断线段OG的长度是否为定值?并说明理由.
分析:(1)由|
s
|+|
t
|=2
2
,知
(x+1)2+y2
+
(x-1)2+y2
=2
2
,由此能求出动点P(x,y)的轨迹C的方程.
(2)点A(1,0)和B(-1,0)为C的两个焦点,连接BM,BN,由椭圆的对称性可知四边形AMBN是平行四边形,所以∠AMB=π-∠MAN=
π
3
,设MA=r1,MB=r2,由椭圆定义知r12+r22+2r1r2=8.在△AMB中,由余弦定理知r12+r2 2-2r1r2cos
π
3
=4
,所以r1r2=
4
3
,由此得S△MAN=
1
2
r1r2sin
π
3
=
3
3

(3)设动点D(2,y0),则以OD为直径的圆的方程为x(x-2)+y(y-y0)=0,直线GA:2x+y0y-2=0,由此得G的轨迹方程是x2+y2=2,从而得到OG=
2
(定值).
解答:解:(1)∵
s
=(x+1,y),
t
=(y,x-1),(x,y∈R)满足|
s
|+|
t
|=2
2

(x+1)2+y2
+
(x-1)2+y2
=2
2

∴动点P(x,y)的轨迹C的方程是以(±1,0)为焦点,以长轴长为2
2
,短轴长为2的椭圆,
∴动点P(x,y)的轨迹C的方程为
x2
2
+y2=1

(2)∵点A(1,0)和B(-1,0)为C的两个焦点,连接BM,BN,
由椭圆的对称性可知四边形AMBN是平行四边形,
∴∠AMB=π-∠MAN=
π
3

设MA=r1,MB=r2
由椭圆定义知r1+r2=2
2
,即r12+r22+2r1r2=8,
在△AMB中,由余弦定理知r12+r2 2-2r1r2cos
π
3
=4

两式作差,得r1r2=
4
3

S△MAN=
1
2
r1r2sin
π
3
=
3
3

(3)设动点D(2,y0),
则以OD为直径的圆的方程为x(x-2)+y(y-y0)=0,①
直线GA:2x+y0y-2=0,②
由①②联立消去y0得G的轨迹方程是x2+y2=2,
∴OG=
2
(定值)
点评:本题考查圆与圆锥曲线的综合应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地运用圆锥曲线的性质进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网