ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬·½³ÌΪx2+y2+Dx+Ey+F=0µÄÔ²MµÄÄÚ½ÓËıßÐÎABCDµÄ¶Ô½ÇÏßACºÍBD»¥Ïà´¹Ö±£¬ÇÒACºÍBD·Ö±ðÔÚxÖáºÍyÖáÉÏ£®
£¨1£©ÇóÖ¤£ºF£¼0£»
£¨2£©ÈôËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
•
=0£¬ÇóD2+E2-4FµÄÖµ£»
£¨3£©ÉèËıßÐÎABCDµÄÒ»Ìõ±ßCDµÄÖеãΪG£¬OH¡ÍABÇÒ´¹×ãΪH£®ÊÔÓÃƽÃæ½âÎö¼¸ºÎµÄÑо¿·½·¨ÅжϵãO¡¢G¡¢HÊÇ·ñ¹²Ïߣ¬²¢ËµÃ÷ÀíÓÉ£®
£¨1£©ÇóÖ¤£ºF£¼0£»
£¨2£©ÈôËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
AB |
AD |
£¨3£©ÉèËıßÐÎABCDµÄÒ»Ìõ±ßCDµÄÖеãΪG£¬OH¡ÍABÇÒ´¹×ãΪH£®ÊÔÓÃƽÃæ½âÎö¼¸ºÎµÄÑо¿·½·¨ÅжϵãO¡¢G¡¢HÊÇ·ñ¹²Ïߣ¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ö¤·¨Ò»£¬ÀûÓÃÔµãÔÚÔ²ÄÚ£¬Ô²ÐÄ×ø±ê´úÈë·½³Ì£¬·½³ÌµÄ×ó±ßСÓÚ0£¬Ö±½ÓÖ¤Ã÷F£¼0£»
Ö¤·¨¶þ£ºA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèA£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®ÀûÓÃx2+y2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃ
x2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÍƳöxAxC=ac=F£®µÃµ½½áÂÛ£®
£¨2£©ËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
•
=0£¬µÃµ½|BD|=8£¬ÍƳör=4£¬¼´¿ÉÇóD2+E2-4FµÄÖµ£»
£¨3£©ÉèA£¬B£¬C£¬DµÄ×ø±ê£¬Çó³öµãGµÄ×ø±êΪ(
£¬
)£¬¼´
=(
£¬
)£¬Í¨¹ýAB¡ÍOH£¬Ö¤Ã÷G¡¢O¡¢HÈýµã¹²Ïߣ¬Ö»ÐèÖ¤
•
=0¼´¿É£®
Ö¤·¨¶þ£ºA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèA£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®ÀûÓÃx2+y2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃ
x2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÍƳöxAxC=ac=F£®µÃµ½½áÂÛ£®
£¨2£©ËıßÐÎABCDµÄÃæ»ýΪ8£¬¶Ô½ÇÏßACµÄ³¤Îª2£¬ÇÒ
AB |
AD |
£¨3£©ÉèA£¬B£¬C£¬DµÄ×ø±ê£¬Çó³öµãGµÄ×ø±êΪ(
c |
2 |
d |
2 |
OG |
c |
2 |
d |
2 |
AB |
OG |
½â´ð£º½â£º£¨1£©Ö¤·¨Ò»£ºÓÉÌâÒ⣬ԵãO±Ø¶¨ÔÚÔ²MÄÚ£¬¼´µã£¨0£¬0£©´úÈë·½³Ìx2+y2+Dx+Ey+F=0µÄ×ó±ßºóµÄֵСÓÚ0£¬
ÓÚÊÇÓÐF£¼0£¬¼´Ö¤£®¡£¨4·Ö£©
Ö¤·¨¶þ£ºÓÉÌâÒ⣬²»ÄÑ·¢ÏÖA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèÁ½µã×ø±ê·Ö±ðΪ
A£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®
¶ÔÓÚÔ²·½³Ìx2+y2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃx2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÓÚÊÇÓÐxAxC=ac=F£®
ÒòΪac£¼0£¬¹ÊF£¼0£®¡£¨4·Ö£©
£¨2£©²»ÄÑ·¢ÏÖ£¬¶Ô½ÇÏß»¥Ïà´¹Ö±µÄËıßÐÎABCDÃæ»ýS=
£¬ÒòΪS=8£¬|AC|=2£¬¿ÉµÃ|BD|=8£®¡£¨6·Ö£©
ÓÖÒòΪ
•
=0£¬ËùÒÔ¡ÏAΪֱ½Ç£¬¶øÒòΪËıßÐÎÊÇÔ²MµÄÄÚ½ÓËıßÐΣ¬¹Ê|BD|=2r=8⇒r=4£®¡£¨8·Ö£©
¶ÔÓÚ·½³Ìx2+y2+Dx+Ey+F=0Ëù±íʾµÄÔ²£¬¿ÉÖª
+
-F=r2£¬ËùÒÔD2+E2-4F=4r2=64£®¡£¨10·Ö£©
£¨3£©Ö¤£ºÉèËıßÐÎËĸö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨a£¬0£©£¬B£¨0£¬b£©£¬C£¨c£¬0£©£¬D£¨0£¬d£©£®
Ôò¿ÉµÃµãGµÄ×ø±êΪ(
£¬
)£¬¼´
=(
£¬
)£®¡£¨12·Ö£©
ÓÖ
=(-A£¬B)£¬ÇÒAB¡ÍOH£¬¹ÊҪʹG¡¢O¡¢HÈýµã¹²Ïߣ¬Ö»ÐèÖ¤
•
=0¼´¿É£®
¶ø
•
=
£¬ÇÒ¶ÔÓÚÔ²MµÄÒ»°ã·½³Ìx2+y2+Dx+Ey+F=0£¬
µ±y=0ʱ¿ÉµÃx2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬
ÓÚÊÇÓÐxAxC=ac=F£®¡£¨14·Ö£©
ͬÀí£¬µ±x=0ʱ£¬¿ÉµÃy2+Ey+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãBºÍµãDµÄ×Ý×ø±ê£¬ÓÚÊÇÓÐyByD=bd=F£®
ËùÒÔ£¬
•
=
=0£¬¼´AB¡ÍOG£®
¹ÊO¡¢G¡¢H±Ø¶¨Èýµã¹²Ïߣ®¡£¨16·Ö£©
ÓÚÊÇÓÐF£¼0£¬¼´Ö¤£®¡£¨4·Ö£©
Ö¤·¨¶þ£ºÓÉÌâÒ⣬²»ÄÑ·¢ÏÖA¡¢CÁ½µã·Ö±ðÔÚxÖáÕý¸º°ëÖáÉÏ£®ÉèÁ½µã×ø±ê·Ö±ðΪ
A£¨a£¬0£©£¬C£¨c£¬0£©£¬ÔòÓÐac£¼0£®
¶ÔÓÚÔ²·½³Ìx2+y2+Dx+Ey+F=0£¬µ±y=0ʱ£¬¿ÉµÃx2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬ÓÚÊÇÓÐxAxC=ac=F£®
ÒòΪac£¼0£¬¹ÊF£¼0£®¡£¨4·Ö£©
£¨2£©²»ÄÑ·¢ÏÖ£¬¶Ô½ÇÏß»¥Ïà´¹Ö±µÄËıßÐÎABCDÃæ»ýS=
|AC|•|BD| |
2 |
ÓÖÒòΪ
AB |
AD |
¶ÔÓÚ·½³Ìx2+y2+Dx+Ey+F=0Ëù±íʾµÄÔ²£¬¿ÉÖª
D2 |
4 |
E2 |
4 |
£¨3£©Ö¤£ºÉèËıßÐÎËĸö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨a£¬0£©£¬B£¨0£¬b£©£¬C£¨c£¬0£©£¬D£¨0£¬d£©£®
Ôò¿ÉµÃµãGµÄ×ø±êΪ(
c |
2 |
d |
2 |
OG |
c |
2 |
d |
2 |
ÓÖ
AB |
AB |
OG |
¶ø
AB |
OG |
bd-ac |
2 |
µ±y=0ʱ¿ÉµÃx2+Dx+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãAºÍµãCµÄºá×ø±ê£¬
ÓÚÊÇÓÐxAxC=ac=F£®¡£¨14·Ö£©
ͬÀí£¬µ±x=0ʱ£¬¿ÉµÃy2+Ey+F=0£¬ÆäÖз½³ÌµÄÁ½¸ù·Ö±ðΪµãBºÍµãDµÄ×Ý×ø±ê£¬ÓÚÊÇÓÐyByD=bd=F£®
ËùÒÔ£¬
AB |
OG |
bd-ac |
2 |
¹ÊO¡¢G¡¢H±Ø¶¨Èýµã¹²Ïߣ®¡£¨16·Ö£©
µãÆÀ£º±¾ÌâÊÇÖеµÌ⣬¿¼²éµã¡¢Ö±ÏßÓëÔ²µÄλÖùØϵ£¬Ô²µÄ·½³ÌµÄÓ¦Ó㬽âÎö·¨Ö¤Ã÷ÎÊÌâµÄ·½·¨£¬¿¼²é¼ÆËãÄÜÁ¦£¬×ª»¯Ë¼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èçͼ£¬ÔÚÖ±½Ç×ø±êƽÃæÄÚÓÐÒ»¸ö±ß³¤Îªa¡¢ÖÐÐÄÔÚÔµãOµÄÕýÁù±ßÐÎABCDEF£¬AB¡ÎOx£®Ö±ÏßL£ºy=kx+t£¨kΪ³£Êý£©ÓëÕýÁù±ßÐν»ÓÚM¡¢NÁ½µã£¬¼Ç¡÷OMNµÄÃæ»ýΪS£¬Ôòº¯ÊýS=f£¨t£©µÄÆæżÐÔΪ£¨¡¡¡¡£©
A¡¢Å¼º¯Êý | B¡¢Æ溯Êý | C¡¢²»ÊÇÆ溯Êý£¬Ò²²»ÊÇżº¯Êý | D¡¢ÆæżÐÔÓëkÓÐ¹Ø |