题目内容
若A+B=2π | 3 |
分析:通过二倍角公式化简cos2A+cos2B,通过A+B=
,进而求出cos2A+cos2B=
cos(2A+
)+1,根据余弦函数的性质得出答案.
2π |
3 |
1 |
2 |
π |
3 |
解答:解:cos2A+cos2B
=
(2cos2A-1)+
+
(2cos2B-1)+
=
cos2A+
cos2B+1
∵A+B=
∴B=
-A
∴
cos2A+
cos2B+1
=
cos2A+
cos(
-2A)+1
=
cos2A+
[(-
cos2A)-
sin2A]+1
=
(
cos2A-
sin2A)+1
=
cos(2A+
)+1
即cos2A+cos2B=
cos(2A+
)+1
∵-1≤cos(2A+
)≤1
∴
≤
cos(2A+
)+1≤
即cos2A+cos2B的取值范围为[
,
]
故答案为:[
,
]
=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
∵A+B=
2π |
3 |
∴B=
2π |
3 |
∴
1 |
2 |
1 |
2 |
=
1 |
2 |
1 |
2 |
4π |
3 |
=
1 |
2 |
1 |
2 |
1 |
2 |
| ||
2 |
=
1 |
2 |
1 |
2 |
| ||
2 |
=
1 |
2 |
π |
3 |
即cos2A+cos2B=
1 |
2 |
π |
3 |
∵-1≤cos(2A+
π |
3 |
∴
1 |
2 |
1 |
2 |
π |
3 |
3 |
2 |
即cos2A+cos2B的取值范围为[
1 |
2 |
3 |
2 |
故答案为:[
1 |
2 |
3 |
2 |
点评:本题主要考查了三角函数中的二倍角和两角和公式的应用.要求应熟练掌握并灵活运用这些公式.
练习册系列答案
相关题目