题目内容
已知函数f(x)为二次函数,不等式f(x)+2<0的解集为(-1,
),且对任意的a,β∈R,恒有f(sinα)≤0,f(2+cosβ)≥0.
(1)求f(x)的解析式;
(2)若数列{an}满足a1=1,3an+1=1-
(n∈N*),求数列{an}的通项公式;
(3)设bn=
,在(2)的条件下,若数列{bn}的前n项和为Sn,求数列{Sn•cos(bnπ)}的前n项和Tn.
1 |
3 |
(1)求f(x)的解析式;
(2)若数列{an}满足a1=1,3an+1=1-
1 | ||
f(an+1)-f(an)-
|
(3)设bn=
1 |
an |
分析:(1)由不等式的解集设出f(x)+2的两根式,对角α,β取特值后得到f(1)=1,由此可取函数f(x)的解析式;
(2)求出f(an+1),f(an),代入已知的等式中化简得到数列{
}为等差数列,求出数列{
}的通项公式后可求数列{an}的通项公式;
(3)由bn=
,求出cos(bnπ),然后分n为偶数和奇数讨论求解数列{Sn•cos(bnπ)}的前n项和Tn.
(2)求出f(an+1),f(an),代入已知的等式中化简得到数列{
1 |
an |
1 |
an |
(3)由bn=
1 |
an |
解答:解:(1)设f(x)+2=a(x+1)(x-
)(a>0),即f(x)=ax2+
x-
-2.
取α=
,β=π,代入f(sinα)≤0,f(2+cosβ)≥0,则f(1)≤0,f(1)≥0同时成立,
故f(1)=0,解得a=
,故f(x)=
x2+x-
;
(2)∵f(an+1)-f(an)=
(an+1)2+(an+1)-
-(
an2+an-
)=3an+
.
∴3an+1=1-
=1-
=
.
即
=
+3.故数列{
}为等差数列.
∵
=1,∴
=3n-2,an=
;
(3)∵bn=3n-2,∴cos(bnπ)=cos(3n-2)π=
k∈N*
即Sn•cos(bnπ)=(-1)nSn,∴Tn=-S1+S2-S3+S4-…+(-1)nSn.
①当n为偶数时,Tn=(-S1+S2)+(-S3+S4)+…+(-Sn-1+Sn)
=b2+b4+…+bn=
.
②当n为奇数时,
Tn=Tn-1-Sn=
-
=
.
综上,Tn=
.
1 |
3 |
2a |
3 |
a |
3 |
取α=
π |
2 |
故f(1)=0,解得a=
3 |
2 |
3 |
2 |
5 |
2 |
(2)∵f(an+1)-f(an)=
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
5 |
2 |
∴3an+1=1-
1 | ||
f(an+1)-f(an)-
|
1 |
3an+1 |
3an |
3an+1 |
即
1 |
an+1 |
1 |
an |
1 |
an |
∵
1 |
a1 |
1 |
an |
1 |
3n-2 |
(3)∵bn=3n-2,∴cos(bnπ)=cos(3n-2)π=
|
即Sn•cos(bnπ)=(-1)nSn,∴Tn=-S1+S2-S3+S4-…+(-1)nSn.
①当n为偶数时,Tn=(-S1+S2)+(-S3+S4)+…+(-Sn-1+Sn)
=b2+b4+…+bn=
3n2+2n |
4 |
②当n为奇数时,
Tn=Tn-1-Sn=
3(n-1)2+2(n-1) |
4 |
n(1+3n-2) |
2 |
-3n2-2n+1 |
4 |
综上,Tn=
|
点评:本题考查了一元二次不等式的解法,考查了数列的函数特性,考查了数列的递推式及数列的和,考查了分类讨论的数学思想方法,考查了学生综合处理和解决问题的能力,是有一定难度题目.
练习册系列答案
相关题目