题目内容
【题目】已知函数
.
(Ⅰ)求曲线
的斜率为1的切线方程;
(Ⅱ)当
时,求证:
;
(Ⅲ)设
,记
在区间
上的最大值为M(a),当M(a)最小时,求a的值.
【答案】(Ⅰ)
和
.
(Ⅱ)见解析;
(Ⅲ)
.
【解析】
(Ⅰ)首先求解导函数,然后利用导函数求得切点的横坐标,据此求得切点坐标即可确定切线方程;
(Ⅱ)由题意分别证得
和
即可证得题中的结论;
(Ⅲ)由题意结合(Ⅱ)中的结论分类讨论即可求得a的值.
(Ⅰ)
,令
得
或者
.
当
时,
,此时切线方程为
,即
;
当
时,
,此时切线方程为
,即
;
综上可得所求切线方程为
和
.
(Ⅱ)设
,
,令
得
或者
,所以当
时,
,
为增函数;当
时,
,
为减函数;当
时,
,
为增函数;
而
,所以
,即
;
同理令
,可求其最小值为
,所以
,即
,综上可得
.
(Ⅲ)由(Ⅱ)知
,
所以
是
中的较大者,
若
,即
时,
;
若
,即
时,
;
所以当
最小时,
,此时
.
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
|
|
|
|
|
|
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:
.
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量
单位:万只
与相应年份
序号
的数据表和散点图
如图所示
,根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数
单位:个
关于x的回归方程
.
年份序号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
年养殖山羊 |
|
|
|
|
|
|
|
|
|
根据表中的数据和所给统计量,求y关于x的线性回归方程
参考统计量:
,
;
试估计:
该县第一年养殖山羊多少万只
到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
![]()