题目内容

3.已知tan(π+α)=2,计算
(Ⅰ)$\frac{{2cos(\frac{π}{2}+α)-cos(π-α)}}{{sin(\frac{π}{2}-α)-3sin(π+α)}}$;
(Ⅱ)$\frac{{{{sin}^3}α-cosα}}{{{{sin}^3}α+2cosα}}$.

分析 (1)利用诱导公式求出正切函数值,化简所求的表达式为正切函数的形式,求解即可.
(2)利用“1”的代换,化简函数的表达式为正切函数的形式,代入求解即可.

解答 解:(1)∵tan(π+α)=2∴tanα=2,
$\begin{array}{l}∴原式=\frac{-2sinα+cosα}{cosα+3sinα}=\frac{-2tanα+1}{1+3tanα}=-\frac{3}{7}\end{array}$
(2)$原式=\frac{{{{sin}^3}α-cosα({{sin}^2}α+{{cos}^2}α)}}{{{{sin}^3}α+2cosα({{sin}^2}α+{{cos}^2}α)}}$=$\frac{{{{tan}^3}α-{{tan}^2}α-1}}{{{{tan}^3}α+2{{tan}^2}α+2}}=\frac{1}{6}$

点评 本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网