题目内容
已知集合P={x|x(x2+10x+24)=0},Q={y|y=2n-1,1≤n≤2,n∈N*},M=P∪Q,
在平面直角坐标系中,点(x',y')的坐标x'∈M,y'∈M,试计算:
(1)点A正好在第三象限的概率;
(2)点A不在y轴上的概率;
(3)点A正好落在区域x2+y2≤10上的概率.
在平面直角坐标系中,点(x',y')的坐标x'∈M,y'∈M,试计算:
(1)点A正好在第三象限的概率;
(2)点A不在y轴上的概率;
(3)点A正好落在区域x2+y2≤10上的概率.
由集合P={x|x(x2+10x+24)=0}可得P={-6,-4,0},
由Q={y|y=2n-1,1≤n≤2,n∈N*}可得Q={1,3},M=P∪Q={-6,-4,0,1,3},
因为点A(x',y')的坐标,x'∈M,y'∈M,所以满足条件的A点共有5×5=25个,
(1)正好在第三象限点有(-6,-6),(-4,-6),(-6,-4),(-4,-4),
故点A正好在第三象限的概率P1=
.
(2)在y轴上的点有(0,-6),(0,-4),(0,0),(0,1),(0,3),
故点A不在y轴上的概率P2=1-
=
.
(3)正好落在x2+y2≤10上的点有(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3)
故A落在x2+y2≤10上的概率为P3=
.
由Q={y|y=2n-1,1≤n≤2,n∈N*}可得Q={1,3},M=P∪Q={-6,-4,0,1,3},
因为点A(x',y')的坐标,x'∈M,y'∈M,所以满足条件的A点共有5×5=25个,
(1)正好在第三象限点有(-6,-6),(-4,-6),(-6,-4),(-4,-4),
故点A正好在第三象限的概率P1=
4 |
25 |
(2)在y轴上的点有(0,-6),(0,-4),(0,0),(0,1),(0,3),
故点A不在y轴上的概率P2=1-
5 |
25 |
4 |
5 |
(3)正好落在x2+y2≤10上的点有(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3)
故A落在x2+y2≤10上的概率为P3=
7 |
25 |
练习册系列答案
相关题目
已知集合P={x|x(x-1)≥0},Q={x|
>0},则P∩Q等于( )
1 |
x-1 |
A、∅ |
B、{x|x≥1} |
C、{x|x>1} |
D、{x|x≥1或x<0} |