ÌâÄ¿ÄÚÈÝ
£¨1£©ÈôÖ±½ÇÈý½ÇÐÎÁ½Ö±½Ç±ß³¤Ö®ºÍΪ12£¬ÇóÆäÖܳ¤pµÄ×îСֵ£»
£¨2£©ÈôÈý½ÇÐÎÓÐÒ»¸öÄÚ½ÇΪarccos
£¬Öܳ¤Îª¶¨Öµp£¬ÇóÃæ»ýSµÄ×î´óÖµ£»
£¨3£©ÎªÁËÑо¿±ß³¤a¡¢b¡¢cÂú×ã9¡Ýa¡Ý8¡Ýb¡Ý4¡Ýc¡Ý3µÄÈý½ÇÐÎÆäÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¬ÏÖÓнⷨÈçÏ£ºS=
absinC¡Ü
¡Á9¡Á8sinC=36sinC£¬ÒªÊ¹SµÄÖµ×î´ó£¬ÔòӦʹsinC×î´ó£¬¼´Ê¹¡ÏC×î´ó£¬Ò²¾ÍÊÇʹ¡ÏCËù¶ÔµÄ±ßc±ß³¤×î´ó£¬ËùÒÔ£¬µ±a?9£¬b?8£¬c?4ʱ¸ÃÈý½ÇÐÎÃæ»ý×î´ó£¬´ËʱcosC=
£¬sinC=
£¬ËùÒÔ£¬¸ÃÈý½ÇÐÎÃæ»ýµÄ×î´óÖµÊÇ
£®ÒÔÉϽâ´ðÊÇ·ñÕýÈ·£¿Èô²»ÕýÈ·£¬ÇëÄã¸ø³öÕýÈ·µÄ½â´ð£®
£¨2£©ÈôÈý½ÇÐÎÓÐÒ»¸öÄÚ½ÇΪarccos
7 |
9 |
£¨3£©ÎªÁËÑо¿±ß³¤a¡¢b¡¢cÂú×ã9¡Ýa¡Ý8¡Ýb¡Ý4¡Ýc¡Ý3µÄÈý½ÇÐÎÆäÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¬ÏÖÓнⷨÈçÏ£ºS=
1 |
2 |
1 |
2 |
43 |
48 |
| ||
48 |
3
| ||
4 |
£¨1£©ÉèÖ±½ÇÈý½ÇÐÎÁ½Ö±½Ç±ß³¤·Ö±ðΪx¡¢12-x£¬Ð±±ß³¤Îªy£¬Ôò y=
=
¡Ý6
£¬
¡àÁ½Ö±½Ç±ß³¤¶¼Îª6ʱ£¬Öܳ¤pµÄ×îСֵΪ 12+6
£®
£¨2£©ÉèÈý½ÇÐÎÖб߳¤Îªx¡¢yµÄÁ½±ßËù¼ÐµÄ½ÇΪ arccos
£¬ÔòÖܳ¤p=x+y+
£¬
¡àp¡Ý2
+
=
£¬¼´ xy¡Ü
p2£®
ÓÖS=
xysin(arccos
)=
xy¡Ü
p2£¬¡àÃæ»ýSµÄ×î´óֵΪ
p2£®
£¨3£©²»ÕýÈ·£®16S2=£¨a+b+c£©£¨a+b-c£©£¨a-b+c£©£¨-a+b+c£©=[£¨b+c£©2-a2][a2-£¨b-c£©2]
=-a4+2£¨b2+c2£©a2-£¨b2-c2£©2=-[a2-£¨b2+c2£©]2+4b2c2£¬
¶ø-[a2-£¨b2+c2£©]2¡Ü0£¬b2¡Ü64£¬c2¡Ü16£¬ÔòS¡Ü16£®
ÆäÖеȺųÉÁ¢µÄÌõ¼þÊÇ a2=b2+c2£¬b=8£¬c=4£¬Ôò a=4
£®
¡àµ±Èý½ÇÐεı߳¤a¡¢b¡¢c ·Ö±ðΪ 4
£¬8£¬4µÄÖ±½ÇÈý½ÇÐÎʱ£¬ÆäÃæ»ýÈ¡µÃ×î´óÖµ16£®
£¨ ÁíS=
bcsinA¡Ü
•8•4•sin90¡ã=16£©£®
x2+(12-x)2 |
2(x-6)2+72 |
2 |
¡àÁ½Ö±½Ç±ß³¤¶¼Îª6ʱ£¬Öܳ¤pµÄ×îСֵΪ 12+6
2 |
£¨2£©ÉèÈý½ÇÐÎÖб߳¤Îªx¡¢yµÄÁ½±ßËù¼ÐµÄ½ÇΪ arccos
7 |
9 |
x2+y2-2xy•
|
¡àp¡Ý2
xy |
2xy-
|
8 |
3 |
xy |
9 |
64 |
ÓÖS=
1 |
2 |
7 |
9 |
2
| ||
9 |
| ||
32 |
| ||
32 |
£¨3£©²»ÕýÈ·£®16S2=£¨a+b+c£©£¨a+b-c£©£¨a-b+c£©£¨-a+b+c£©=[£¨b+c£©2-a2][a2-£¨b-c£©2]
=-a4+2£¨b2+c2£©a2-£¨b2-c2£©2=-[a2-£¨b2+c2£©]2+4b2c2£¬
¶ø-[a2-£¨b2+c2£©]2¡Ü0£¬b2¡Ü64£¬c2¡Ü16£¬ÔòS¡Ü16£®
ÆäÖеȺųÉÁ¢µÄÌõ¼þÊÇ a2=b2+c2£¬b=8£¬c=4£¬Ôò a=4
5 |
¡àµ±Èý½ÇÐεı߳¤a¡¢b¡¢c ·Ö±ðΪ 4
5 |
£¨ ÁíS=
1 |
2 |
1 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿