题目内容
(本题满分12分)
设函数,,是的一个极大值点.
(Ⅰ)若,求的取值范围;
(Ⅱ) 当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由.
解析:本题主要考查函数极值的概念、导数运算法则、导数应用及等差数列等基础知识,同时考查推理论证能力、分类讨论等综合解题能力和创新意识.
(Ⅰ)解:时,,
,
令,,
设是的两个根,
(1)当或时,则不是极值点,不合题意;
(2)当且时,由于是的极大值点,故
,即,
(Ⅱ)解:,
令,
,
于是,假设是的两个实根,且
由(Ⅰ)可知,必有,且是的三个极值点,
则,
假设存在及满足题意,
(1)当等差时,即时,
则或,
于是,即
此时
或
(2)当时,则或
①若,则,
于是,
即
两边平方得,
于是,
此时,
此时=
②若,则,
于是,
即
两边平方得,
于是,
此时
此时
综上所述,存在b满足题意,
当b=-a-3时,,
时,,
时,.
练习册系列答案
相关题目