题目内容
(06年北京卷理)(14分)
已知点,动点满足条件.记动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)若是上的不同两点,是坐标原点,求的最小值.
解析:(1)依题意,点P的轨迹是以M,N为焦点的双曲线的右支,所求方程为: (x>0)
(1) 当直线AB的斜率不存在时,设直线AB的方程为x=x0,此时A(x0,),
B(x0,-),=2
当直线AB的斜率存在时,设直线AB的方程为y=kx+b,代入双曲线方程中,得:
(1-k2)x2-2kbx-b2-2=0……………………1°
依题意可知方程1°有两个不相等的正数根,设A(x1,y1),B(x2,y2),则
解得|k|>1又=x1x2+y1y2=x1x2+(kx1+b)(kx2+b)=(1+k2)x1x2+kb(x1+x2)+b2=>2
综上可知的最小值为2
练习册系列答案
相关题目