题目内容
已知命题,,命题,,若命题“”是真命题,则实数的取值范围是( )
A.或 B.或
C. D.
已知函数.
(1)若,求的取值范围;
(2)求的最大值.
未知数的个数多余方程个数的方程(组)叫做不定方程,最早提出不定方程的是我国的《九章算术》.实际生活中有很多不定方程的例子,例如“百鸡问题”:公元五世纪末,我国古代数学家张丘建在《算经》中提出了“百鸡问题”:“鸡母一,值钱三;鸡翁一,值钱二;鸡雏二,值钱一.百钱买百鸡,问鸡翁、母、雏各几何?”
算法设计:
(1)设母鸡、公鸡、小鸡数分别为、、,则应满足如下条件:
;.
(2)先分析一下三个变量的可能值.①的最小值可能为零,若全部钱用来买母鸡,最多只能买33只,
故的值为中的整数.②的最小值为零,最大值为50.③的最小值为零,最大值为100.
(3)对、、三个未知数来说,取值范围最少.为提高程序的效率,先考虑对的值进行一一列举.
(4)在固定一个的值的前提下,再对值进行一一列举.
(5)对于每个,,怎样去寻找满足百年买百鸡条件的.由于,值已设定,便可由下式得到:.
(6)这时的,,是一组可能解,它只满足“百鸡”条件,还未满足“百钱”.是否真实解,还要看它们是否满足,满足即为所求解.
根据上述算法思想,画出流程图并用伪代码表示.
下列给出三个程序框图,按条件结构;顺序结构、循环结构正确的顺序是( )
A.①②③ B.②①③ C.②③① D.③①②
已知函数
(1)写出函数的递减区间;
(2)求函数的极值.
函数,则( )
A. B.
C. D.的大小关系不能确定
已知函数,其中且.
(Ⅰ)讨论的单调区间;
(Ⅱ)若直线的图象恒在函数图像的上方,求的取值范围;
(Ⅲ)若存在,,使得,求证:.
若函数恰有三个单调区间,则实数的取值范围为( )
若,(),,,使,则的取值范围是( )
A. B. C. D.