题目内容

已知f(n)=
1
n+1
+
1
n+2
+…+
1
3n-1
(n∈N+),则f(k+1)-f(k)=
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1
分析:由k到k+1时增加和减少的项即可求出.
解答:解:∵f(k)=
1
k+1
+
1
k+2
+…+
1
3k-1

f(k+1)=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
3(k+1)-4
+
1
3(k+1)-3
+
1
3(k+1)-2
+
1
3(k+1)-1

∴f(k+1)-f(k)=
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1

故答案为
1
3k
+
1
3k+1
+
1
3k+2
-
1
k+1
点评:正确弄清由k到k+1时增加和减少的项是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网