题目内容
已知f(n)=
+
+…+
(n∈N+),则f(k+1)-f(k)=
+
+
-
+
+
-
.
1 |
n+1 |
1 |
n+2 |
1 |
3n-1 |
1 |
3k |
1 |
3k+1 |
1 |
3k+2 |
1 |
k+1 |
1 |
3k |
1 |
3k+1 |
1 |
3k+2 |
1 |
k+1 |
分析:由k到k+1时增加和减少的项即可求出.
解答:解:∵f(k)=
+
+…+
,
f(k+1)=
+
+…+
+
+
+
,
∴f(k+1)-f(k)=
+
+
-
.
故答案为
+
+
-
.
1 |
k+1 |
1 |
k+2 |
1 |
3k-1 |
f(k+1)=
1 |
(k+1)+1 |
1 |
(k+1)+2 |
1 |
3(k+1)-4 |
1 |
3(k+1)-3 |
1 |
3(k+1)-2 |
1 |
3(k+1)-1 |
∴f(k+1)-f(k)=
1 |
3k |
1 |
3k+1 |
1 |
3k+2 |
1 |
k+1 |
故答案为
1 |
3k |
1 |
3k+1 |
1 |
3k+2 |
1 |
k+1 |
点评:正确弄清由k到k+1时增加和减少的项是解题的关键.
练习册系列答案
相关题目
已知f(n)=
+
+
+…+
,则f(n+1)=( )
1 |
n+1 |
1 |
n+2 |
1 |
n+3 |
1 |
2n |
A、f(n)++
| ||||
B、f(n)++
| ||||
C、f(n)-
| ||||
D、f(n)+
|
已知f(n)=
+
+
+…+
,则( )
1 |
n |
1 |
n+1 |
1 |
n+2 |
1 |
n2 |
A、f(n)中共有n项,当n=2时,f(2)=
| ||||||
B、f(n)中共有n+1项,当n=2时,f(2)=
| ||||||
C、f(n)中共有n2-n项,当n=2时,f(2)=
| ||||||
D、f(n)中共有n2-n+1项,当n=2时,f(2)=
|