题目内容
已知ABC,∠C=60°,AC=2,BC=1,点M是ABC内部或边界上一动点,N是边BC的中点,则的最大值为__________。
解析
若向量,那么 .
已知向量a,b满足| a | = 1,b= 2,(a – b)·a= 0,则a与b的夹角为 .
已知,,的夹角为θ,且tanθ=(1)求的值; (2)求的值.
已知椭圆(a>b>0)经过点M(,1),离心率为.(1)求椭圆的标准方程;(2)已知点P(,0),若A,B为已知椭圆上两动点,且满足,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
平面上三点A、B、C满足,,则+
已知单位向量的夹角为120°,当取得最小值时 .
设a,b,c为单位向量,a,b的夹角为600,则(a + b + c)·c的最大值为 .
已知中心为的正方形的边长为2,点、分别为线段、上的两个不同点,且,则的取值范围是