ÌâÄ¿ÄÚÈÝ
ÓÐÒ»º£Í壬º£°¶ÏßΪ½üËÆ°ë¸öÍÖÔ²£¨Èçͼ£©£¬ÍÖÔ²³¤Öá¶ËµãΪA£¬B£¬AB¼ä¾àÀëΪ3km£¬ÍÖÔ²½¹µãΪC£¬D£¬CD¼ä¾àÀëΪ2km£¬ÔÚC£¬D´¦·Ö±ðÓмף¬ÒÒÁ½¸öÓ;®£¬ÏÖ×¼±¸ÔÚº£°¶ÏßÉϽ¨Ò»¶È¼Ù´åP£¬²»¿¼ÂÇ·çÏòµÈÒòËØÓ°Ï죬Ó;®¶Ô¶È¼Ù´å·ÏÆøÎÛȾ³Ì¶ÈÓëÅųö·ÏÆøµÄŨ¶È³ÉÕý±È£¨±ÈÀýϵÊý¶¼Îªk1£©£¬Óë¾àÀëµÄƽ·½³É·´±È£¨±ÈÀýϵÊý¶¼Îªk2£©£¬ÓÖÖª¼×Ó;®ÅųöµÄ·ÏÆøŨ¶ÈÊÇÒÒµÄ8±¶£®
£¨1£©ÉèÒÒÓ;®ÅųöµÄŨ¶ÈΪa£¨aΪ³£Êý£©¶È¼Ù´åP¾àÀë¼×Ó;®xkm£¬¶È¼Ù´åPÊܵ½¼×ÒÒÁ½Ó;®µÄÎÛȾ³Ì¶ÈºÍ¼ÇΪf£¨x£©£¬Çóf£¨x£©µÄ±í´ïʽ²¢Çó¶¨ÒåÓò£»
£¨2£©¶È¼Ù´åP¾àÀë¼×Ó;®¶àÉÙʱ£¬¼×ÒÒÁ½Ó;®¶Ô¶È¼Ù´åµÄ·ÏÆøÎÛȾ³Ì¶ÈºÍ×îС£¿
£¨1£©ÉèÒÒÓ;®ÅųöµÄŨ¶ÈΪa£¨aΪ³£Êý£©¶È¼Ù´åP¾àÀë¼×Ó;®xkm£¬¶È¼Ù´åPÊܵ½¼×ÒÒÁ½Ó;®µÄÎÛȾ³Ì¶ÈºÍ¼ÇΪf£¨x£©£¬Çóf£¨x£©µÄ±í´ïʽ²¢Çó¶¨ÒåÓò£»
£¨2£©¶È¼Ù´åP¾àÀë¼×Ó;®¶àÉÙʱ£¬¼×ÒÒÁ½Ó;®¶Ô¶È¼Ù´åµÄ·ÏÆøÎÛȾ³Ì¶ÈºÍ×îС£¿
·ÖÎö£º£¨1£©ÓɵãPÔÚÍÖÔ²ÉÏ£¬Öª|PC|+|PD|=3£¬Éè|PC|=x£¬Ôò|PD|=3-x£¬Óɴ˿ɵÃPµãÊܼ×Ó;®ÎÛȾ³Ì¶È¡¢ÊÜÒÒÓ;®ÎÛȾ³Ì¶È£¬¼´¿ÉÇóµÃÎÛȾ³Ì¶ÈºÍ£»
£¨2£©Áîf(x)=
+
=ak1k2£¨
+
£©£¬Ç󵼺¯Êý£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶ø¿ÉÇóº¯ÊýµÄ×îСֵ£®
£¨2£©Áîf(x)=
8ak1k2 |
x2 |
ak1k2 |
(3-x)2 |
8 |
x2 |
1 |
9-6x+x2 |
½â´ð£º½â£º£¨1£©ÓɵãPÔÚÍÖÔ²ÉÏ£¬Öª|PC|+|PD|=3£¬Éè|PC|=x£¬Ôò|PD|=3-x£®
PµãÊܼ×Ó;®ÎÛȾ³Ì¶ÈΪ
£¬PµãÊÜÒÒÓ;®ÎÛȾ³Ì¶ÈΪ
ÎÛȾ³Ì¶ÈºÍΪf(x)=
+
£¬¶¨ÒåÓòΪ[
£¬
]
£¨2£©Áîf(x)=
+
=ak1k2£¨
+
£©£¬
Ç󵼺¯Êý£¬¿ÉµÃf¡ä£¨x£©=18ak1k2¡Á
Áîf¡ä£¨x£©=0£¬½âµÃx=2£®
µ±x¡Ê(
£¬2)ʱ£¬f¡ä£¨x£©£¼0£¬º¯ÊýΪ¼õº¯Êý£»µ±x(2£¬
)ʱ£¬f¡ä£¨x£©£¾0£¬º¯ÊýΪÔöº¯Êý£»
µ±x=2ʱ£¬f£¨x£©È¡µÃ×îСֵ£®
´ð£¬¶È¼Ù´å¾àÀë¼×Ó;®2kmʱ£¬¼×¡¢ÒÒÁ½Ó;®¶Ô¶È¼Ù´åµÄ·ÏÆøÎÛȾ³Ì¶ÈºÍ×îС£®
PµãÊܼ×Ó;®ÎÛȾ³Ì¶ÈΪ
8ak1k2 |
x2 |
ak1k2 |
(3-x)2 |
ÎÛȾ³Ì¶ÈºÍΪf(x)=
8ak1k2 |
x2 |
ak1k2 |
(3-x)2 |
1 |
2 |
5 |
2 |
£¨2£©Áîf(x)=
8ak1k2 |
x2 |
ak1k2 |
(3-x)2 |
8 |
x2 |
1 |
9-6x+x2 |
Ç󵼺¯Êý£¬¿ÉµÃf¡ä£¨x£©=18ak1k2¡Á
(x-2)(x2-6x+12) |
x3(3-x)3 |
Áîf¡ä£¨x£©=0£¬½âµÃx=2£®
µ±x¡Ê(
1 |
2 |
5 |
2 |
µ±x=2ʱ£¬f£¨x£©È¡µÃ×îСֵ£®
´ð£¬¶È¼Ù´å¾àÀë¼×Ó;®2kmʱ£¬¼×¡¢ÒÒÁ½Ó;®¶Ô¶È¼Ù´åµÄ·ÏÆøÎÛȾ³Ì¶ÈºÍ×îС£®
µãÆÀ£º±¾Ì⿼²éµ¼ÊýµÄÓ¦Ó㬿¼²éº¯Êý˼Ï룬¿¼²éÔĶÁÄÜÁ¦¡¢½¨Ä£ÄÜÁ¦¡¢ÔËËãÄÜÁ¦£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿