题目内容

(2013•宝山区二模)如图所示,扇形AOB,圆心角AOB的大小等于
π3
,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P.
(1)若C是OA的中点,求PC;
(2)设∠COP=θ,求△POC周长的最大值及此时θ的值.
分析:(1)通过已知条件,利用余弦定理,就求出PC即可;
(2)设∠COP=θ,利用正弦定理求出OC,然后求△POC周长的表达式,利用两角和的正弦函数化简函数的表达式,然后求出最大值及此时θ的值.
解答:(本题满分14分)本题共有2小题,第1小题满分(6分),第2小题满分(8分).
解:(1)在△POC中,∠OCP=
3
,OP=2,OC=1
OP2=OC2+PC2-2OC•PCcos
3

得PC2+PC-3=0,解得PC=
-1+
13
2

(2)∵CP∥OB,∴∠CPO=∠POB=
π
3

在△POC中,由正弦定理得
OP
sin∠PCO
=
CP
sinθ
,即
2
sin
3
=
CP
sinθ

CP=
4
3
sinθ
,又
OC
sin(
π
3
-θ)
=
CP
sin
3
OC=
4
3
sin(
π
3
-θ)

记△POC的周长为C(θ),则C(θ)=CP+OC+2=
4
3
sinθ+
4
3
sin(
π
3
-θ)+2

=
4
3
(
3
2
cosθ+
1
2
sinθ)+2=
4
3
sin(θ+
π
3
)+2

θ=
π
6
时,C(θ)取得最大值为
4
3
3
+2
点评:本题考查解三角形的知识,正弦定理与余弦定理的应用,两角和与差的三角函数的应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网